

MULTIPLIER

Scaling Yourself & Influencing as a Principal Software Engineer

© 2025 Zillow, Inc. All rights reserved.

Copy edit and page design by Rebecca Moreno.

1st Edition: November 2025

1

Nathan Figueroa Kerry Hart

Ryan Lohan Ralph McNeal

The practices described in this book reflect experiences within specific organizational
contexts. Not all recommendations may apply equally across different organizational cultures
or structures. Evaluate and adapt these practices to suit your unique environment. The
scenarios and the people in them are fictional. Antipatterns discussed represent common
industry scenarios and experiences. Views expressed are those of the authors, not
necessarily of Zillow Group.

2

Table of contents

Why we wrote this... 8

How to read this book.. 11

Part I — Creating impact through leverage.. 14

Section 1
Thinking long-term and designing for change.. 14

 Working backward... 16
 Beware local maxima... 18

Section 2
Creating clarity from ambiguity...22

 Proof of Concept...24
Seek two-way doors... 25
Quantify the problem.. 26
Act decisively.. 27

Section 3
Creating surface area for others...29

Know the engineers of your organization.. 29
 Inspecting, intervening, and letting others fail..31

Lead with questions, not answers.. 33

Part II — Cultivating relationships..34

The correlation between relationships and influence...................................34
Building and understanding relationships..35
Common barriers to understanding others... 36
Indicators of strong relationships.. 37

Section 1
Building relationships with juniors...39

3

Building trust... 39
Informal Mentorship...41
Formal mentorship.. 42
Giving feedback.. 43
Involve juniors in decision-making... 45

Section 2
Building relationships with management.. 48

Managing up... 48
Getting the most out of a 1:1... 49
Status updates and transparent communication..................................... 50

Section 3
Building relationships with project stakeholders.. 52

Laying the groundwork with nemawashi..52
Collaborate with PM to understand stakeholder priorities.......................54

Section 4
Building your network..56

Engage in cross-orginizational initiatives...56
Make connections through forums...58
Leverage relationships to expand your network...................................... 58

Part III — Leveraging influence..60
 Influencing down, up, out, and across... 60

 Section 1
 Cultivating a standard of excellence..61

Lead by example..61
Pave the way... 64
Amplify success..66
Build communities of technical excellence.. 68

Section 2
Driving impact through collaboration..70

Lead technical working groups... 71

4

Resolve technical conflict... 73
Communicate with clarity..77

Part IV — Scaling yourself.. 82

Quadrant 1
Getting the important things done.. 85

Discuss priority with stakeholders..85
Planned focus time..87
Manage your meetings... 89

Quadrant 2
Working on the long-term things... 91

Let time reveal what’s important...92
Write it down... 92
A bi-modal approach to decision making...93

Quadrant 3
Shedding the unimportant things..94

Delegation... 94
Reduce planning commitment.. 96
Identify systemic causes...97
Choose your battles.. 97

Quadrant 4
Discarding the rest.. 98

Saying no to your managerial chain... 99
Saying no to a stakeholder.. 100
Saying no to a junior...101

Part V — Building technical strategy...102

 Section 1
 Fundamentals of good strategy... 102

Section 2

5

Diagnosis..104
Understanding business priorities.. 105
Understanding engineering priorities... 108
Learning from the industry.. 108

Section 3
Guiding policy... 110

Delivering incremental value..113
Experimentation and learning.. 114
Develop a framework for prioritizing technical debt............................... 115

Section 4
Coherent actions.. 122

Strangler fig... 123
Shadow runner...124
Stitch a solution together with steel threads...125

Section 5
Putting it all together: Crafting a strategic proposal..127

The power of writing it all down.. 127
Articulate risks and tradeoffs.. 128
Strategic evolution... 129

Conclusion...132

About the authors...133

Acknowledgments..135

Appendix
Zillow Group Core Values...137

Appendix
Zillow Group Software Development Engineer Leveling Guide...................... 138

1 Overview.. 138
2 Role Description.. 138

6

3 Facets of the Software Development Engineer role...................................... 139
4 Career Progression Summary.. 140
5 Level Descriptions...142

7

Why we wrote this

As software engineers grow in our careers, we often must choose among three
divergent paths.

The first path stays focused on individual accomplishments: learning to write
better code, building better systems, and leveraging new technologies. But the
extent of an individual contributor’s impact can be limited, especially within large
organizations supporting complex products. If we wish to have greater influence,
we must take a different path.

The second path is management, where our influence expands through direct
leadership. Engineering managers rely on their own technical background to
formulate strategy, inspect outputs, assess talent, and otherwise marshal the
many engineers they manage to produce the software that underpins the
business.

The third path is to become a principal engineer, and it’s the path we, the authors
of this book, have chosen. The title for this role may vary by company—some
refer to it as Staff—but the emphasis on technical leadership remains the same.
Our role is deeply technical: we architect systems, write critical code, assess
technologies, and otherwise build (and operate) software. Yet, our value is defined
not by the consistent delivery of well-defined tasks but by our ability to identify
and deliver outsized impact (value) for the company. We do this through a mixture
of hands-on innovation and strategic influence of others.

For those pursuing the managerial path, there are countless articles, books, and
courses — entire curricula! — designed to help us learn and grow. In contrast,
there’s a dearth of equivalent material for those who wish to grow as principal
engineers. We know — we looked!

In our experiences as principal engineers and employees of Zillow Group, we’ve
witnessed firsthand the impact of the lack of structured guidance for this third
path. It’s difficult to consistently deliver the significant organizational impact our
roles call for, and many of our fellow principal engineers expressed feeling
overwhelmed. Some were embedded so deeply in their teams’ day-to-day
execution that they had little time left to pursue the larger, strategic initiatives that

8

define success at this level. Others had the right scope and support, but found
themselves in unfamiliar territory: the skills that had propelled them to this point
were no longer the ones that would sustain their effectiveness.

What was missing was not talent but structure: a common understanding,
practical techniques, and a concrete path forward. We set out to build that. The
result is this book, which was originally designed as a training program for Zillow’s
principal engineers as they take that next career step and expand their influence
by driving business impact.

While the content began as Zillow-specific, we’ve worked to generalize it for a
broader audience—preserving the practices and strategies that resonate across
companies and contexts. We’ve adapted examples, clarified terminology, and
removed internal shorthand where needed, but the core material remains
grounded in real problems we’ve faced. Our goal is to share practical insights and
hard-won lessons from that journey—shaped to support engineers navigating
complex technical and organizational challenges.

By the time of publication, over 90% of our principal engineers—ranging from
those new to the role to those with 20+ years of experience—have completed the
program. Feedback has been overwhelmingly positive. Participants have praised
the program for providing practical techniques, establishing a shared language,
and fostering leadership and vision.

“I wish something like this had been offered when I was first promoted to
principal.”

“The program was great to frame the context of expectations and empower
principals to lean into the role, specifically in the aspect of leadership and
vision.”

“I think this has been the most valuable Zillow course I have taken so far
and I feel that I can apply the learning material in this course directly to my
day to day activities.”

“Lots of new good techniques I wasn't familiar with and things I was
already doing which I guess come naturally being a principal, but was still
nice to get a reinforcement that I was on the right track”

9

“I would encourage every principal engineer to go through this.”

We’re sharing this content with the wider industry because we recognize how
valuable it would have been earlier in our own careers. Whether you are just
stepping onto this path or have walked it a long while, we hope it offers you
practical insights and valuable guidance on your career journey.

10

How to read this book
We’ve designed this content to flex around your needs — whether you want the
full principal engineer learning journey or just a quick dive on a specific skill.
Here’s how to navigate.

Our intended audience
This book is primarily written for principal engineers. If you’re in this role and
seeking ways to amplify your influence, navigate ambiguity, and grow in your
career — this book was written for you. It may also be useful to senior engineers
considering a transition into a principal role, or to engineering managers who want
to better support the principal engineers they work with.

Note that we use the term principal engineer in this book, as it’s the term we use
internally at Zillow®. However, we recognize that staff engineer is also widely used
across the industry, and we make no distinction between the two. The content
should be equally applicable regardless of formal title.1

How it’s structured
We’ve organized the book into five distinct parts. You can jump in anywhere, but
the skills build on each other from part to part.

Part I – Creating impact through leverage​
Learn how to position yourself where your effort multiplies, generating
outsized impact.

Part II – Cultivating relationships​
Master the connective tissue of any engineering org — building trust and
collaboration across levels.

Part III – Leveraging influence​
Shape outcomes and attitudes without formal authority, by accruing trust,
demonstrating expertise, and using clear communication.

1 Zillow® is a registered trademark of MFTB Holdco, Inc.

11

Part IV – Scaling yourself​
Maximize your impact as a principal engineer without burning out your
limited time, energy, or attention.

Part V – Building technical strategy​
Craft a technical strategy that balances immediate deliverables with a
long-term vision to meet business goals.

In each part, you’ll find focused explorations of key themes in sections like:

Techniques
Actionable patterns you can apply to your day-to-day work.

Scenarios
Fictional Zillow-style examples that demonstrate concepts in the work
environment.

Exercises
Reflection prompts and hands-on challenges to help the learning stick. Use
them to reinforce what you learn or skip them if you prefer!

Antipatterns
Common pitfalls to avoid.

You can treat each part as its own mini-course: pull the techniques, scenarios, or
exercises that address the challenges you face today. Skip to the part that meets
your needs, or follow in sequence to see how the concepts layer and reinforce
one another. Whatever path you choose, you’ll learn great stuff, so the choice is
yours.

Facets and the engineering ladder
Throughout this book, you’ll see excerpts quoted from Zillow’s Software
Development Engineer Leveling Guide referencing a particular “facet.” The
leveling guide organizes role expectations into seven of these “facets,” such as
code, architecture, and leadership. We’ve provided our complete guide as an
appendix. While reading it isn’t necessary to engage with the content of the book,
you may find it helpful to refer to.

12

Zillow’s core values
Along the way, you'll see references to Zillow's core values like #OwnIt, which
shape how we work together, serve our customers, and make decisions every
day. You can read more about them in the relevant appendix.

Cloud HQ
While we believe the insights in this book are broadly applicable across many tech
companies, there’s an important aspect that makes Zillow different: our fully
remote work environment, affectionately-termed Cloud HQ. This is a foundational
strength for our company and a core part of our identity that affords our
employees autonomy and unparalleled focus. It does, however, place greater
responsibility on our principal engineering community, requiring enhanced
connection, coordination, and relationship-building. This fact is reflected
throughout the book.

13

Part I

Creating impact through
leverage

“Impact is paramount, and you must scale. Sometimes, your impact will be greatest
when you go deep to author critical code or uncover a subtle flaw; at other times, your
impact will be greatest when you act broadly to shape approaches across several
teams or systems.”

— Zillow Leveling Guide

In this part, we’ll explore what leverage means for principal engineers. Like a
physical lever amplifies force to move a heavy object, leverage in engineering
amplifies your impact. It’s about using your knowledge, skills, and influence
strategically to drive outcomes that extend well beyond your own work. This
means making choices that create value across teams, systems, and time
horizons. We'll delve into techniques for thinking long-term, creating clarity from
ambiguity, and empowering others — skills that help you maximize your leverage
as a Principal Engineer.

Section 1

Thinking long-term and designing for change

“You seek to build and cultivate capabilities over features: you understand that a curated
set of fundamental strengths enables a great variety of particular features, quickly and

14

affordably. You build systems that anticipate change; you enable an architecture where it
is easy to disband and replace particular systems when the need arises.”
Architecture facet

“You are an expert in your business domain, shaping technical investments to unlock
long-term business capabilities.” Strategy facet

“The feedback cycles are longer than before, stretching across quarters and into years —
a solution must not only deliver incremental value, but withstand the test of time via
resiliency, scale, and adaptability.” Strategy facet

— Zillow Leveling Guide

As a principal engineer, it’s your responsibility to align long-term technology
direction to long-term business needs. You must reason over longer time scales
than more junior engineers — that means thinking across years, not just quarters.

Businesses are generally good at evaluating short-term value: what a solution
delivers compared to what it costs to build. It’s natural to try to maximize the value
of the former and minimize the latter in a kind of basic equation:

 𝑉𝑎𝑙𝑢𝑒 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 − 𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡

Even early in our careers, we can recognize that this view is too simplistic. A
solution exists for a period of time, and during that time, the utilized features
accrue value. But every solution also carries a maintenance cost, which we can
generally refer to as debt. Like financial debt, deferred maintenance tends to grow
over time, accruing unwanted long-term interest. So we get a more realistic
equation, something like:

 𝑉𝑎𝑙𝑢𝑒 = ∫ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 − ∫ 𝑑𝑒𝑏𝑡 − 𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡

However, we also know that most solutions will have to evolve to meet changing
business needs. A system that can easily adapt is better than one that is
expensive to change. So an equation that accounts for adaptability looks like:

 𝑉𝑎𝑙𝑢𝑒 = ∫ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 − ∫ 𝑑𝑒𝑏𝑡 − ∫ 𝑐𝑜𝑠𝑡 𝑡𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡

Note that build cost is constant — therefore, over the lifetime of the system, it is
(likely) dominated by the cost of change. Adaptability, in this view, is more
important than initial build cost.

15

Yet, we must recognize that build cost is immediately accrued while the value of
adaptability is speculative: the future success of associated features/products
isn’t guaranteed, so any associated ability to grow and adapt may never be
realized.

This, of course, is the challenge that a principal engineer faces: to inexpensively
build a system that, over time, will prove adaptable to the changing needs of the
business. To replace ambiguity with short-term deliverables aligned to long-term
vision is the primary role of the principal engineer.

Technique: Working backward
A proven method for marrying vision to short-term value is to work backward from
a desired end state.

This end state may be an idealized product experience. Or, it may be an ideal
system state — some combination of adaptable, scalable, resilient, and
economical. Whatever this desired end state is, write it down and make it explicit.
Describe why it matters to the business and what value it will create.

Use this document to build alignment. Coauthoring your end state with
stakeholders can be powerful, increasing buy-in and the sense of shared
commitment. Not everyone will agree on every detail — or even that the entire
vision will be built. But if you can agree that the vision is desirable, it becomes a
basic bias around which you and your stakeholders can orient all future decisions:
in general, a decision that advances the system toward the stated vision is
preferred to one that doesn’t.

With this vision established, work backward from there.

●​ What major system components need to be built?

●​ How robust or fully featured does each need to be?

●​ Which pieces should be built as distinct services or components early,
because they’ll be hard to split out later?

●​ Which pieces will be easy to refactor at a later point?

16

Write this down as you go, establishing a rough sequence of work. Identify what
constitutes a first iteration — where is the cut line for the initial deliverable?

Rarely will the first iteration include only simple, easy-to-deliver work. Often, you’ll
want to de-risk a larger project by working as early as possible on the most
ambiguous ‘big rocks.’ Such as, investigating whether a core architectural
assumption will hold true. Or, identifying that a particular framework may have a
high initial adoption cost, but will be far more expensive (read: impossible) to later
retrofit into a project.

This is key. As the principal engineer, it’s your responsibility to identify the major
design risks and advocate for working on them early. You don’t build a house by
assembling a bedroom first, no matter how sleepy you are. The work you put into
clarifying priorities, building consensus, and anchoring the team in shared
principles creates the trust and mandate you need to address critical risks early —
that’s your leverage.

To illustrate, let’s consider a scenario. We’ll return to this scenario throughout this
part to explore different techniques and approaches. Though rooted in the Zillow
product, it’s a fictitious scenario and, like all scenarios in this book, isn’t intended
to map to real world systems, people, or organizations.

Scenario
Suppose that you are a principal engineer working on the home shopping
experience. The product organization is proposing to add a new feature that
allows a customer to share a favorited home with a co-shopper, such as a partner
or friend.

While the initial request is simple — share all of a customer’s favorite homes with
one other person — you know that the B2B side of Zillow is interested in enabling
a customer to better share information like favorited homes with industry partners,
such as agents and loan officers. You recognize that you and your fellow
engineers in the B2B side of Zillow have a common authorization problem — and
you know that modeling authorization is a very difficult problem, fraught with edge
cases and complications.

17

Currently, the products for customers and industry partners are disjointed: the
easiest thing to do is to build in isolation. After all, no one in the business is
advocating for integration — yet.

To get ahead of the problem, you work with fellow principal engineers from across
the company to articulate a vision: a common standard for describing
authorization rules. Perhaps this happens asynchronously; perhaps the issue is
contentious enough that it warrants a working onsite.

Regardless, you coauthor a paper that describes an end state where future
integrations will become doable because the standard is shared — an
authorization rule written for one stack will be fundamentally interpretable by
another.

There is talk about the value of building out a centralized solution to store the
authorization rules. This will require significant investment and take time. One of
your B2B partners has a partially built but non-generalizable solution, and they
cannot wait. Others, however, can wait or use easily-reversible stop-gap options.

So, you agree that your team will evaluate backend stores with an eye towards
building a generalized solution. While the B2B team will continue forward with
their existing solution to meet deadlines, they agree to adhere to the authorization
standard. Future integration — while far from trivial — will be viable because of
these agreements.

This vision established, you can now turn to your particular problem — authorizing
one shopper to share data with another. You know that choosing your datastore
will be important, though, so you need to allocate time to test and design (we’ll
pick this up later in the “Creating clarity from ambiguity” section).

Technique: Beware local maxima
Another way to think about working backwards from an end state is to frame it in
terms of avoiding the well known trap of optimizing for a local maximum.

18

Starting from point A, we can iteratively develop our approach via small changes
to arrive at the optimal configuration, represented on the diagram by point B. This
is a common conceit in iterative system development: We’ll keep making small
changes until the system is optimized.

Let’s zoom out.

19

If we broaden our view to consider more possibilities, we might see that iteration
in a different direction (towards a different architecture, technology, etc.) could
result in a better outcome (point C). From this perspective, we see that point B
was a local maximum, not a global one.

But let’s zoom out even further.

20

Point E is the best configuration — but it lies beyond B. We could iterate to B, but
moving forward will be high effort— and we’ll have to suffer lost value if we keep
slowly iterating along the curve. In practice, this may mean making significant,
nonfunctional changes to affect a major change — pragmatic, but slow and
expensive.

However, if we start by working backward from E, we might chart an alternative
path: from Point A to D to E. We don’t chase B — we skip right past it. The initial
value added from A to D is lower, but it may quickly position us to move up the
curve to E.

By thinking long-term and working backwards from an end point, we can avoid the
trap of chasing a local maxima that inhibits, rather than enables, the business. In
this way, we create better outcomes without requiring additional engineering
resources — maximizing our individual impact by charting a better path.

21

Exercise

Let's pause and reflect on thinking long-term. In your career, when have
you had success driving long-term thinking? What techniques did you use?

On the flip side, were there times where an attempt to think long-term failed
in the face of other pressures? Why? Do you think any of the techniques
described could have helped? If not, what else might have helped?

Section 2

Creating clarity from ambiguity

“You are expected to identify, define, socialize, and break down novel problems in your
organizational domain.” Strategy facet

“Your design documents are models of reasoned decision making, persuading the reader
to accept a conclusion through the careful specification of the problem, thorough
presentation of context, and rigorous analysis of trade-offs. You use data to bring clarity
to contentious issues.” Communication facet

— Zillow Leveling Guide

As a principal engineer, it’s your job to peer further into the technical murk than
others. When the business launches a new initiative and no one knows where to
start, you begin shaping that ambiguity into a concrete plan. You turn high-level
ideas into architecture — sketching out systems, responsibilities, and flows. And
when the initiative moves forward, you assess whether the many parts are solving
the problem in the correct way, or if we’re missing an opportunity to approach the
problem differently. Turning the broad wishes of the business into actual software
is part and parcel of what we do.

Yet, it’s also more than that. A principal must proactively survey the ambiguity
around them — things like changing technologies, aging architectures,
unanticipated business needs, the shifting behaviors of dependencies and clients
— and spot the emergent problems before anyone else.

Then comes the hard part: helping others understand the problem. Not only do
you need to see the issue, you must explain it clearly so others grasp the
implications. It isn’t enough to envision the problem in your mind; you must
persuade others.

In other words, some of your highest-leverage impact will come less from solving
problems than from defining them. By helping others understand the size, scope,
risk, and trade-offs of various approaches, you reduce ambiguity and accelerate
better decisions.

22

Scenario
Let’s return to our scenario where you worked with other principal engineers
across the company to articulate the problem: a generalized approach to
authorizing data access would, in time, enable a more integrated product
experience. Your ability to articulate the problem to get others on board was key
to making progress.

Clarifying the problem is a process itself and can unfold over days, weeks or even
months depending on the circumstances, through an approach like this:

1.​ Speaking with individuals, probably other principal engineers, line
managers, and product managers across the company. You leverage your
network to identify folks to socialize the problem quickly with like-minded
thinkers.

2.​ After initial feedback suggests that the rough contours of the problem are
well understood, you articulate the problem quickly in a one-page
document. You use this to socialize the problem further, especially with
leadership.

3.​ You work with your leadership to schedule a working onsite. Several
difficult problems need to be whiteboarded, and this will happen much more
efficiently in person. You can now pick a date to work backwards from: after
all, this cross-cutting authorization problem would be easy for any one
individual to deprioritize. By forcing a get-together date, you drive the group
towards a decision.

4.​ You translate the decisions from the onsite into a compelling six-page
document, cosigned by your fellow principal engineers from across the
organization.

5.​ You then take this document to other forums for socialization and feedback.

6.​ Note that this work didn’t necessarily block juniors from other kinds of work
in the same problem space. As a principal engineer, you context switch
frequently — you can drive this thread of work while helping move other
aspects of the project forward.

The act of identifying a problem does not, in and of itself, create impact. It’s not
enough to notice the iceberg, you need the captain to actually turn the ship away

23

from the collision! By clarifying the size,
scope, risks, and trade-offs through
conversations with fellow principal
engineers, line managers, and product
partners—and socializing those insights
through documents and working
sessions—you help map out how to steer
away from the collision.

Technique: Proof of Concept
When you’re evaluating a new pattern or technology, hands-on work is often the
fastest way to demonstrate viability. A working prototype — or proof of concept
— can do more than a dozen pages of design. It’s one of the best ways to author
high-leverage code and break through analysis paralysis by tangibly
demonstrating the feasibility (or infeasibility) or a particular idea. It can facilitate
constructive discussion of an otherwise abstract or novel approach to a problem.
 A proof of concept (PoC) is not an MVP (minimum viable product). It’s an artifact
meant to test a hypothesis — ‘nothing more. It’s intended to be fast, cheap, and
disposable. And because it won’t be released to production, you’re free to discard
the typical rigor you’d apply to your code.

Remember: a PoC doesn’t replace an eventual design. It lets you collect
information through hands-on learning — and those learnings should be captured
in a proper design document, where they will inform a wider range of
considerations.

PoCs are tools for learning, not shipping.

Scenario
With a company-wide authorization approach now in place, you turn your
attention to your own domain: co-shopping. There is a new backing datastore
technology that specializes in modeling granular authorization rules. The website
is slick, you’ve heard good things from others in the industry, and the
documentation looks promising.

24

 Antipattern

A PoC must teach us something about our
product or UX thinking, or about our
engineering approach and the feasibility of
a particular implementation strategy.
There’s little value in converting a
well-crafted UX mock into a working demo
unless it’s geared toward specific
educational objectives.

You could draw up a spreadsheet to begin
a feature-by-feature comparison with
alternative technologies. This might be
useful, even necessary. However, you also
know that this is new territory for yourself
and the larger organization — no one has
used a technology quite like this one
before. You want to get a sense of how it
works and how easy it is to use. So, you
roll up your sleeves to build a proof of
concept.

You know you’re not building an MVP. You’re testing for specific factors, like: How
well will this integrate with GraphQL? How difficult is it to unit test against? Is
language support consistent for our Golang, Kotlin, and JS backends? You build
out one or two demo-able examples. These will quickly build confidence in your
approach — or signal that you need to try something else.

A quick PoC gives you clarity — and gives the team confidence to move forward
or change direction, together.

Technique: Seek two-way doors
A two-way door is a decision you can reverse easily or inexpensively. Walk
through it, and if you decide you don’t like what’s on the other side, step back
through and make a quick exit. A one-way door is the opposite: once you go
through, you’ll struggle to claw your way back out. You can minimize risk and
make decisions more quickly by identifying and favoring two-way doors.

Two-way doors help you avoid analysis paralysis. If you’re stuck between several
design options, pick the one that is not too expensive to undo later. Start building
toward it, and learn from the work along the way. Junior members of your team
can make progress in a direction while you (or other leaders) continue to analyze
and learn. This might increase throw-away work — and that’s fine! Code isn’t
intended to live forever. In general, when you have multiple options and the
trade-offs among them are hard to quantify, bias toward the one that is easiest to
back out of.

25

 Antipattern

Don’t confuse two-way doors with biasing
toward the cheapest or quickest solution.
Too often, a solution chosen in haste to
meet an arbitrary deadline is the most
difficult to unwind — e.g., an ill-thought-out
API adopted by dozens of dependencies or
a datastore choice that’s difficult to migrate
away from. Be intentional and design for
reversibility, especially when ambiguity is
high.

This is a technique for minimizing risk in
achieving the vision, not minimizing the
effort or time required. If upfront analysis
or authoring a proof of concept isn’t
possible, reduce risk by choosing the
approach that can be reversed. Take a
step, gather information, and adjust.
That’s how to reduce risk and create
clarity from ambiguity.

This approach calls for something more nuanced: work that maximizes learning
new, valuable information — even if you don’t keep the code — may be the best
way to move your long-term vision forward.

Technique: Quantify the problem
A great way to reduce ambiguity is by distilling the problem to a set of quantifiable
metrics. Ideally, these are well-aligned to business value, so stakeholders of all
stripes can easily understand what changes to the metrics mean — e.g., more
home shoppers getting connected with an agent is a good thing, fewer people
scheduling a tour is a bad thing, etc.

Sometimes we’ll struggle to tie engineering work directly to a clear business
metric. We might be tempted, in those moments, to throw up our hands and say,
“trust me.” But that won’t help others understand the problem, and, even if your
effort proceeds, you may find yourself struggling to articulate the value you
delivered at the end.
Instead, try to quantify the problem, however imperfectly. Be upfront about any
gaps, and trust your audience to listen. Too often, we worry that others will chase
a single metric aggressively and at the expense of other measurements, so we
avoid quantifying anything at all.

Look for existing frameworks and industry standards. Borrowing quantification
measures from proven sources adds credibility and saves time. For example,
Zillow uses Core Web Vitals to measure the performance of our webpages. It is
easier to convince others to adopt widely-accepted standards and they’re often
more reliable than custom metrics.

Metrics reduce ambiguity and help others see the value you see.

26

 Antipattern

Watch out for poor or irrelevant metrics.
Focusing on small or short-term
fluctuations can leave you chasing local
maxima. Sometimes the most important
metrics are hardest to measure; don’t
simply choose the metric that’s most
readily available. Choose the one that tests
your convictions.

Scenario
Let’s suppose there are two backend storage technologies that you’re considering
for the co-shopping authorization store. You want to evaluate these two options
on three dimensions: scalability, performance, and resiliency.

You build a shared testing framework and benchmarking process. It simulates load
and gathers metrics.

●​ Scalability: CPU utilization under different load patterns
●​ Performance: Average latency
●​ Resiliency: Latency sensitivity when adding or reducing nodes in a cluster

while under load.
All together, you gather a set of metrics by which to compare and contrast
solutions. Will this capture everything? No, but it will help you make a more
informed decision.

Technique: Act decisively
You will face situations where the right decision is not obvious: no clear metric
exists, no clear consensus holds. In these moments, your job is to to #OwnIt —
use your best judgment and choose a path forward.

Analysis paralysis is a real problem — we seek certainty where no certainty can
be found, burning precious time and increasing our chances of failure. One of the
best ways to create clarity is to give the team a path forward. Your decision will
lead to action — detailed designs will be written, PoCs will be created, code will
get pushed — and action will lead to learning. You might learn you made the
wrong decision, and you need to back-track. This is a good thing — hopefully, you
anticipated this and chose a two-way Door. The information you’ve gathered will
help you choose a next-best approach — and often at much lower cost than
waiting for perfect clarity would’ve required.

Scenario
Let’s return to the situation we left. You’re considering two alternative
technologies. The first has the quantitative edge, performing better across a
greater set of metrics—though not across all. The second is easier to use.
Furthermore, the second is a well-maintained open source project under active
development with multiple large, institutional users and an associated SaaS

27

vendor. The first, while still updated and supported, doesn’t appear to have the
same industry momentum.

There is no clear choice. Others are suggesting different dimensions to
investigate, write up, and attempt to quantify (or, at minimum, assess). You
recognize that delay puts the larger project at risk. Product might reasonably call
your effort to tackle the generalized authorization problem scope creep and push
for a quick fix — like just hardcoding a special co-shopper identity into all of the
systems.

So, you use your judgment. You decide that the active development and better
institutional support of technology two suggests that it will close the performance
gap over time — and if it doesn’t, performance is good enough for the next 18
months. You write up your reasoning, quickly share it with stakeholders, and close
out the technology comparison. Time to move on.

Use your judgment, act decisively, and document why.

28

Exercise

Let's pause and reflect on creating clarity from ambiguity. In your career,
what successes have you had helping others — other engineers,
leadership, cross-functional roles — better grasp a problem and build
towards a better solution? What challenges did you face?

Have you leveraged any of the techniques presented here? If so, what
worked and what didn't? What other techniques have you found helpful?

Section 3

Creating surface area for others

“You seek excellence in all things, such that your systems are archetypes of flexibility,
maintainability, security, and testability. You understand that your impact scales with your
influence: you cannot uphold these standards solo, but instead must rely on the team to
embody them even when you’re not looking.” Leadership facet

“When you identify workstreams in large projects, you guide juniors to effective solutions
and inspect their estimates.” Leadership facet

— Zillow Leveling Guide

You must work through others to translate insight and intent into action and
outcome. This is how you scale your impact. Yet, it’s not enough to just hand
requirements to others, dust off your hands, and walk away — you’re responsible
for overseeing the implementation of your ideas. You must learn to inspect the
work of others, often at a lower fidelity than you’d like, and provide high-quality
feedback.

A principal engineer enables others to do good work by creating the surface area
they need to move. Start by breaking down a large project into several subparts,
each actionable by a smaller team or individual. It may seem straightforward, but
the way you delegate tasks can make or break your impact at scale. If you tell
someone how to connect every dot, you’ll get the outcome you planned — but
you’ll stay in the loop forever. If you guide someone through solving the problem
themselves, you free yourself up to focus on what’s next. To put a twist on the
parable: give an engineer a design, and they’ll write some code; teach an engineer
to design and you can go fishing.

In this section, we’ll explore techniques to delegate effectively and guide work at
scale.

Technique: Know the engineers of your organization
This may sound simple, but it’s essential to the principal role: you are a leader of
fellow engineers, and you must understand their strengths, their weaknesses, and

29

their ambitions. While you are not a people manager, you must learn to work
closely with and think like a people manager: Who is trusted to deliver what? Who
desires to grow, and along what dimensions—and so might be uniquely motivated
to tackle a particular problem? Are there weaknesses that require additional
guardrails or support to be successful?

No matter how brilliant a design or a project plan, if it can’t be executed by the
team it’s useless. Similarly, by tailoring work to a team’s capabilities, you might
find that your organization can deliver much more than you realized.

Scenario
Let’s return to our scenario and rewind a bit, back to when you were first
considering two PoCs to evaluate datastore options. Instead of writing these PoCs
yourself, you recognized you could let others do so. This approach helped the
project scale in two ways: it freed you to steward other parts of the project, and it
reduced risk by giving the work to junior engineers who had more time to dig in
and think carefully.

You still wrote the benchmarking harness. This ensured that both PoCs were
evaluated consistently. You reviewed code and asked the junior engineers to make
qualitative evaluations as well.

Before the junior engineers’ work began, however, you spoke to the relevant
software development manager (SDM) about who would pick up this work. The
SDM suggested two senior engineers, Veena and Ryan. You’ve worked with both
extensively, and noted their strengths. Veena is deeply curious and quick to try
new technology, but with a usefully skeptical attitude. She’s a great fit for PoC
work. Ryan, on the other hand, tends to take a cautious and systematic approach
— a great asset when a complex change to a distributed system needs to be
thought through, but a potential risk for quick PoC work.

Let us suppose you raise your concern with the SDM, who suggests you mentor
Ryan during the process. You note that while that might work, this may not be the
best circumstance for mentorship: the deadline is tight and you’re already risking
over-committing your time. Mentoring in this kind of circumstance might take
longer than just doing the work yourself. Instead, you accept a minor delay to the
calendar and ask that Veena do both: this gives her the opportunity to do a more
complete side-by-side qualitative evaluation herself, which will help her grow.

30

Technique: Inspecting, intervening, and letting others fail
Junior engineers are humans, and humans learn best from their own mistakes. If
you want to cultivate an organization that adapts and grows at every level — and
produces ever-better outputs at every scale — you must give individuals the
autonomy to think and act independently.

This comes with risk. The cost of learning through mistakes may have intolerable
consequences for timelines or requirements. If we identify a mistake early and
intervene, we might save the company time and money; yet, if a principal
identifies all the mistakes themselves, they will build a brittle organization.

To navigate this tension, we must be intentional about how we create safe spaces
for failure, how we inspect, and when we intervene.

Creating safe spaces for failure. A mistake can take many forms, such as a
messy but functional change that complicates the code base, a bug that requires
a rollback in production, or a brittle architecture that frustrates feature
development for months or years to come.

When you encounter one of these situations, think once again in terms of
two-ways doors: Which failures are quickly reversible and which are not? Exercise
your judgment: Which decisions or actions warrant your attention because they
will be difficult to unwind? Intervene in those, ignore others that are trivial to
unwind, and keep an eye on the more ambiguous.

You can also cultivate safe spaces for failure by investing in automated guardrails
or self-healing mechanisms. A bug in the code that’s discovered by a failed unit
test will help a junior learn without being of any consequence to the larger
organization. A bug discovered in production and rolled back automatically may
impact timelines, but will have limited impact to customers — and coupled with
strong organizational processes (operational reviews, root cause analysis, etc.)
this experience will provide a great opportunity for juniors to learn.

Inspection. To determine which decisions require your intervention, you need a
way to discover which decisions are being made in the first place. You must

31

inspect. However, you must be careful to ensure that the process of inspection
doesn't unnecessarily remove autonomy and undermine learning.

Avoid becoming the “chief inspector” of your organization, where each engineer
prepares their work to be inspected by you. They will come to know your
preferences and idiosyncrasies, over-indexing on your personal approval and
opinions. This is an easy trap to fall into.

Rather, encourage a culture of inspection by all. An idea disagreed with and
discussed early is a potential lesson learned — and a shared decision by juniors is
an opportunity for all to learn. Model this behavior in your work as well, seeking
feedback not only from your own peers but from juniors — and be open about
your mistakes. Seek to make inspection a shared cultural norm, and subsequent
failures are more likely to be communally shared and lessons communally learned.

Finally, lean into standard rituals that create safe spaces for feedback.
Conversations at the whiteboard can offer opportunities to suggest alternative
approaches or hint at potential failure modes — reducing the risk of failure without
prescribing a path. Design documents can have a similar function. Don't save
these for major design work alone — even the simplest change offers an
opportunity for a junior to take ownership of an analysis, propose options, and
receive feedback early. If a shared culture of inspection is thriving, you may not
have to review many or most of these documents yourself!

Intervene. There will be times where it is necessary to course correct. The
challenge here is to time these interventions appropriately. An expensive diversion
may be best course corrected through a conversation early in a design process —
here, open conversations around the whiteboard or in 1:1s offer a low-friction
method of intervention. A culture of design documents gives you visibility into
decisions happening across the organization. You may identify a risk that others
have missed and intervene on a particular decision or design, while quietly letting
other lower-risk initiatives proceed.

The same holds true for MRs. While you will need to be intentional about the MRs
you review in order to scale yourself, reviewing MRs is an important tool in your
toolbox. You’ll personally review critical changes or changes to particularly
complex paths. In less critical cases, you may informally review MRs to

32

double-check that a culture of inspection is flourishing: Are the right questions
being asked and addressed?

Technique: Lead with questions, not answers
Well-formed questions can prompt introspection and creativity. They help others
think more deeply and explore more broadly.

Questions help you pause before jumping in with “that won’t work” or “try this
instead.” Telling someone what to do might get the right outcome, but it doesn’t
grow the right skills. Asking thoughtful, patient questions guides your team and
helps them arrive at answers on their own. That’s what builds stronger engineers
— and a stronger team. When a person arrives at a conclusion themselves, it’s
theirs — they’ll have conviction and they’ll be more likely to drive it forward
independently.

Questions also give you a chance to learn. You won’t have time to master the
details of every technical domain you’re responsible for — and that’s okay. Rely on
your term and learn from them. That’s how you scale your impact. So, avoid
jumping to the conclusion or asking leading or loaded questions: ask questions
that help you genuinely understand how juniors are conceiving of and
approaching the problem.

Along with being a more inclusive leadership approach, the act of asking
questions helps reduce the chance of incorrect assumptions — both those made
by junior engineers as well as any assumptions you might be making. Often, the
best questions to ask are the most fundamental, as they force everyone to
re-assess assumptions. You, as the senior, will be best positioned to question the
fundamentals.

Tailor your questions to the audience. A senior team you know well may prefer
direct questions, and not feel intimidated by your title. A more junior group might
respond well when you offer a wrong answer — giving them something concrete
to correct and disprove.

33

Exercise

Reflect on these techniques from the perspective of your current
responsibility. How are you creating surface areas for others? What
techniques are working? What challenges have you faced?

Part II

Cultivating relationships

Technical expertise is expected of a principal engineer. What sets you apart as a
truly exceptional principal is your ability to cultivate meaningful relationships
across all levels of the organization. Relationships are the connective tissue of any
engineering organization, enabling seamless collaboration, fostering innovation,
and driving successful project outcomes.

In the complex world of software engineering, where socio-technical systems are
deeply intertwined, building and maintaining strong relationships is not just
beneficial — it’s essential. The interplay between social structures (like teams and
communication networks) and technical systems (like software architecture and
tools) means that success depends on more than just individual skill. It hinges on
how well these systems work together, which is fundamentally a relational
challenge.

The correlation between relationships and influence
In parallel with building relationships, your ability to influence others is a key
determinant of your impact. Influence, which will be discussed more deeply in
part three, isn’t about formal authority; it’s about earning trust, demonstrating
credibility, and building a network of allies. Strong relationships are the foundation
of this influence. Whether you’re advocating for a particular technical approach,
driving a cultural change, or rallying support for a new initiative, the relationships
you've cultivated across the organization give weight to your voice.

Forging relationships gives you more opportunities to demonstrate value and earn
trust, which increases your ability to influence. This in turn strengthens existing
relationships and opens doors to new ones, creating additional trust and influence.

34

By mastering the art of building and nurturing relationships, you can expand your
influence, drive greater alignment across teams, and contribute to a more
cohesive, innovative, and resilient organization. This part will guide you through
practical strategies for cultivating these essential relationships, helping you to not
only advance your own career but also elevate the entire organization.

Building and understanding relationships
"People don't care how much you know until they know how much you care."

— John C. Maxwell2

As a principal engineer advances in their role, the ability to build and maintain
strong relationships becomes increasingly vital. But understanding others and
forming meaningful connections can be challenging, especially in complex and
fast-paced work environments. We'll explore two areas that are essential for
relationship-building: understanding the common barriers that prevent us from

2 John C. Maxwell, Relationships 101 (Harper Collins Leadership, 2004)

35

truly connecting with others, and recognizing the signs that indicate a strong,
healthy relationship.

Common barriers to understanding others
Understanding others is a crucial part of building meaningful relationships, yet it’s
something many struggle with. Here are some reasons why we might fail to truly
understand others.

1.​ Self-centeredness: One of the biggest barriers to understanding others is
being too focused on ourselves. When we're more concerned with our own
needs, opinions, and perspectives, we miss the opportunity to genuinely
see and understand those around us. Building effective relationships
requires shifting the focus from "me" to "we."

2.​ Making assumptions: We often make assumptions about others based on
our own experiences, backgrounds, or biases. These assumptions can lead
to misunderstandings and prevent us from appreciating the unique
perspectives and experiences of those we interact with. Overcoming this
requires intentional listening and an open mind.

3.​ Lack of active listening: Many people listen with the intent to reply rather
than to understand, which leads to shallow interactions and missed
opportunities to connect. Active listening — where you fully concentrate,
understand, respond, and then remember what is being said — is crucial,
especially in collaborative environments like video meetings where
distractions from Slack messages or emails are common. If you can
understand the motivations behind what someone is saying and identify
what the other person is trying to achieve, you’re in a better position to align
goals and build stronger relationships.

4.​ The need to be right: The need to always be right or to dominate
conversations is another major obstacle to understanding others.
Relationships thrive when we prioritize understanding over winning
arguments. Humility and the willingness to learn from others’ perspectives
are key to overcoming this barrier.

5.​ Not valuing differences: Differences in personality, background, and
perspective are strengths that can enrich relationships. However, if we don’t
value these differences, we may struggle to understand others. Embracing

36

diverse thoughts and seeking to learn from those who think and act
differently can lead to deeper understanding and stronger connections.

Indicators of strong relationships
A principal engineer needs to be able to recognize the signs of a strong,
successful relationship. A strong relationship is characterized by trust, open
communication, and mutual respect. When you’ve built a strong relationship, you’ll
notice several key indicators:

●​ Open communication: The person feels comfortable reaching out to you
with questions, concerns, or ideas, and you find that your conversations are
candid and productive. Two-way communication is a hallmark of a healthy
relationship.

●​ Mutual support and collaboration: There’s a natural flow of collaboration,
where both parties are willing to support each other’s goals and challenges.
You’ll notice a willingness to share resources, offer help, and work together
towards common objectives.

●​ Constructive feedback: You can give and receive feedback openly without
hesitation, knowing that it will be taken in the spirit of growth. This
exchange of feedback is a sign that the relationship is built on trust and
mutual respect.

●​ Shared successes: You celebrate successes together, recognizing that
your collaborative efforts contribute to positive outcomes. Whether it’s a
project milestone, a solved problem, or a team achievement, these shared
victories are a testament to the strength of your relationship.

●​ Established trust: Trust is the foundation of any strong relationship. When
trust is present, both parties feel confident in each other’s intentions and
capabilities. You’ll notice that there’s a strong sense of reliability and
integrity, where you can depend on each other to follow through on
commitments and be honest in all interactions. This established trust allows
the relationship to flourish even in the face of challenges.

Building and maintaining strong relationships is essential for your success as a
principal engineer. Overcoming common barriers like self-centeredness,
assumptions, and the need to be right is foundational to creating trust, open
communication, and mutual respect. Recognizing the signs of strong relationships

37

— such as collaboration, constructive feedback, and shared successes — helps
you gauge your effectiveness in building connections. As you move forward,
remember that understanding and connecting with others is an ongoing journey.
The next sections will equip you with practical techniques to enhance these skills
and create lasting, impactful relationships.

38

Section 1

Building relationships with juniors

“You demonstrate effective verbal and written skills, communicating with everyone from
the junior-most engineer to the senior leaders of your organization.” Leadership facet

“You cultivate collaboration, listening to and integrating feedback across all levels.”
Leadership facet

“To your team(s), you set a tenor of excellence: you are skilled at upholding a high-quality
bar without alienating others, seeking to cultivate and mentor.” Leadership facet

— Zillow Leveling Guide

Your mentorship can significantly shape the careers of junior engineers.
Cultivating these relationships helps in transferring knowledge, instilling best
practices, and fostering a culture of continuous learning. Strong relationships with
juniors also creates a more resilient team, where trust and open communication
lead to better problem-solving and innovation. Additionally, creating opportunities
for juniors to grow and demonstrate their value is essential. By providing them
with challenges that allow them to step up and contribute meaningfully, you not
only build their confidence but also reinforce the trust within your team. This
approach ties back to the principles of “Creating surface area for others”
discussed in part one, where giving others the space to showcase their skills
plays a vital role in relationship building.

Technique: Building trust
Trust between you and junior engineers is the foundation of a productive team.
Trust empowers juniors to take risks, share ideas, and ask questions without fear
of judgment, which accelerates their growth and the organization’s overall
success. Establishing trust is not just about mentorship; it’s about creating an
environment where open communication and collaboration thrive.

It goes without saying that being known as someone who gets things done and
has a proven track record helps establish others’ trust in you. While being known
as an engineer who can deliver is significant, that alone may not be enough to

39

build a trusting relationship with the
engineers you work with. You’ll need to
take positive action, too.

Encourage autonomy: Encourage junior
engineers to take ownership of small
projects or tasks. Provide guidance, but
give them the space to make decisions
and learn from their experiences. In
addition to growing the productive

capacity of your organization, this is an effective way to show juniors that you
trust them to build and operate responsibly. This can significantly boost their
confidence in themselves.

Recognition: Acknowledge the contributions and achievements of junior
engineers, making sure you give credit when credit is due. Public recognition can
reinforce their sense of belonging and motivate them to continue striving for
excellence.​

Be accessible and approachable: Make it clear that junior engineers can come to
you with questions or concerns without fear of judgment. While some juniors may
reach out to you proactively, others may be intimidated by your title. Check in with
them regularly to offer support and ensure they know they have a reliable
resource and a friendly ear in you. Follow up on requests you’ve made or topics
you've discussed to show that you are interested in their success.

Show vulnerability and admit mistakes: Admitting when you don’t know
something or when you’ve made a mistake shows that it’s okay to be human,
which in turn encourages junior engineers to be honest about their own learning
processes. One method to create this open atmosphere is to pause the
conversation on a topic in which you have little context in order to explain your
current understanding back to the junior — since they ought to know more than
you on the topic, it gives them the opportunity to correct minor mistakes and
misunderstandings you’ve developed.

Lead by example: You must demonstrate the values and behaviors you want to
see in your team. Whether it’s how you handle mistakes, how you deliver results or

40

 Antipattern

Inspection is important and should be
welcomed by juniors. Juniors who hide
problems risk creating problems in your
organization, especially in a remote
environment. Reward juniors who
proactively communicate — and
demonstrate effectiveness — with your
trust.

demonstrate competence, or the way you manage pressing deadlines, your
actions will set the tone for what is expected and acceptable within the team.

Technique: Informal Mentorship
Mentorship isn't just about structured engagements — it’s about recognizing the
day-to-day opportunities to mentor and foster growth in your team. As a principal
engineer, you’re already involved in code reviews, project kickoffs, and technical
discussions, but don’t forget to also view these moments as mentoring
opportunities. Every interaction is a chance to strengthen relationships, and guide
and influence juniors — not just in terms of immediate technical outcomes, but in
shaping their overall approach to engineering and decision-making.
​
Rather than seeing these activities as routine tasks, approach them with the
mindset of a mentor:

●​ Code reviews: Instead of simply pointing out mistakes, use code reviews to
mentor by explaining why certain practices matter, encouraging long-term
thinking, and showing how small changes can have broader architectural
impacts. This elevates the conversation from code quality to skills growth.

●​ Pair programming: Beyond solving the immediate problem, use pair
programming to expose junior engineers to your problem-solving approach
and decision-making process. These sessions allow you to mentor in real
time, turning collaborative work into valuable learning moments.

●​ Project kickoffs: Kickoffs can be more than just outlining tasks. Mentoring
here means giving context, explaining trade-offs, and encouraging others to
see the bigger picture. It’s an opportunity to help junior engineers
understand the “why” behind the work and how strategic decisions are
made.

●​ Design reviews: Instead of focusing solely on the technical merits of a
design, turn reviews into mentorship opportunities by inviting junior
engineers to explain their thought processes. Engage them in discussing
trade-offs and implications, teaching them how to approach
decision-making with a broader perspective.

Ultimately, informal mentorship is about creating an environment where learning,
growth, and building strong relationships happen naturally. By approaching your

41

interactions and technical discussion as an opportunity to guide, inspire, and
connect, you help junior engineers improve not only their technical skills but also
build confidence in their thinking and decision-making. By encouraging open
dialogue and inviting questions, you’ll strengthen your relationships with your
team, creating a culture where mentorship and building trust are a seamless part
of your daily work.

Technique: Formal mentorship
Formal mentorship is a structured approach to guiding and developing others
within the organization. Unlike informal mentoring, which occurs organically,
formal mentorship has defined objectives, timelines, and expectations.

When you decide to take on a formal mentor role, start by identifying where your
expertise aligns with the specific development needs of the mentee. It’s important
to engage in mentoring relationships where you can truly add value — if the skills
a mentee wants to develop fall outside your strengths, it’s better to guide them to
a more suitable mentor.

If you’re interested in mentoring, proactively communicate with managers in your
organization, letting them know of your desire to support the growth of junior
engineers. This not only positions you as a key resource, but also strengthens
your influence within the organization.

If you work in a distributed environment like we do, be sure to take advantage of
face-to-face time with your mentee when you have the chance. If you and your
mentee are both attending an in-office event, be sure to schedule some 1:1 time
with them. In-person meetings can offer new insights and help strengthen the
relationship as it progresses.

Keys to an effective formal mentorship

●​ Set clear goals. Begin by defining the purpose of the mentorship
relationship. What specific skills or areas of knowledge does the mentee
want to develop? What are their short-term and long-term career goals?
Clear goals provide direction and help measure the success of the
mentorship.

42

●​ Establish a structured plan. Work
with your mentee to create a structured
plan that outlines the frequency of
meetings, key milestones, and topics to
cover. This plan should be flexible enough
to adapt to the mentee’s evolving needs
but structured enough to provide a clear
path forward.

●​ Create a safe space for open
communication. Formal mentorship
should provide a safe and supportive

environment where the mentee feels comfortable sharing their challenges,
aspirations, and feedback. Encourage open communication and be an
active listener, offering advice and support without judgment.

●​ Provide regular feedback. Regular feedback is essential for growth in a
formal mentorship. Offer constructive, actionable feedback that helps the
mentee improve and build confidence. At the same time, encourage the
mentee to reflect on their own progress and identify areas where they want
to improve.

●​ Review and adjust goals as needed. Periodically review the mentee’s
progress toward their goals. If necessary, adjust the goals or approach to
better align with their evolving needs and aspirations. This flexibility
ensures that the mentorship remains relevant and effective over time.

Technique: Giving feedback

Feedback is a crucial tool for growth and development. A principal engineer’s role
in providing feedback extends beyond correcting mistakes — it's about guiding
junior engineers in refining both their technical skills and professional behaviors.
Whether you’re offering insights on specific artifacts like design documents,
RCAs, code reviews, or addressing broader behavioral patterns, your feedback
should aim to build confidence, reinforce positive actions, and guide improvement.
By carefully balancing feedback on both what they create and how they operate,

43

 Antipattern

It's not just what you say but how you say
it. Avoid absolutes like "you always" or
"you never," as these can come across as
overly critical and raise defenses. Using "I"
instead of "you" can make your feedback
more constructive and easier to accept. For
example, instead of saying, "You never
write efficient code," you could say, "I’ve
noticed that there’s an opportunity to
optimize the performance of this function."

you not only help junior engineers grow
but also strengthen the working
relationships within your team.

Key principles for effective feedback

1.​ Be specific and actionable.
General feedback like "good job" or "you
need to improve" doesn’t provide enough
direction. Instead, focus on specific
actions or behaviors and how they can be
improved or replicated.

2.​ Balance positive and constructive
feedback. Start by recognizing what went well to build trust and reinforce
strengths. Then offer clear, constructive feedback. Aim to end with
encouragement or a forward-looking note — something that helps them
stay motivated and focused on growth.

3.​ Focus on outcomes, not the person. Ensure that feedback is directed at
the actions or outcomes rather than the individual's character or
personality. This helps maintain a professional tone and ensures that
feedback is received as constructive, not personal.

4.​ Encourage two-way dialogue. Feedback should be a conversation, not a
monologue. Invite junior engineers to share their perspectives, ask
questions, and express any concerns. This exchange can provide additional
context and helps them feel more engaged in their own development
process. Don’t be afraid to explicitly ask “How can I help you?” or “What
can I do to support you?"

5.​ Be empathetic. Understand that receiving feedback can be difficult,
especially for someone early in their career. Approach the conversation with
empathy, recognizing that your goal is to support their growth, not just
critique their work. Acknowledge their reasoning before addressing gaps in
the work, reinforcing their value while guiding improvement.

44

 Antipattern

When giving feedback, especially in code
reviews, avoid rewriting a junior engineer’s
work in your own voice. It may feel efficient
in the moment — but it short-circuits the
learning process and can erode
confidence. Instead, guide them toward
better solutions by asking questions or
explaining trade-offs. Help them
understand why a change might be
beneficial rather than what the exact fix
should be. Good feedback builds skill, not
dependence.

Technique: Involve juniors in decision-making
Involving junior engineers in decision-making processes is a powerful way to
accelerate their growth, boost their confidence, and foster a sense of ownership
and accountability. When junior engineers are included in decisions, they gain
valuable insights into the complexities of engineering projects, from technical
trade-offs to stakeholder considerations. This involvement not only helps them
develop critical thinking and problem-solving skills but also builds trust when they
feel their contributions are valued and their perspectives respected.

Furthermore, their fresh perspectives can lead to innovative solutions that more
experienced team members might miss. Trusting them in this process also builds
their confidence, preparing them for greater responsibilities and future roles.
Involving juniors fosters a collaborative culture, reinforcing the idea that every
team member has something valuable to contribute.

Tips for involving juniors in decisions

1.​ Invite input during planning. During project planning and design phases,
actively solicit input from junior engineers. Ask for their opinions on
technical approaches, potential risks, and project timelines. Their point of
view can be invaluable in identifying potential issues early on.

2.​ Assign decision-making roles. Give junior engineers specific roles in
decision-making processes, such as leading a task force on a particular
issue or conducting research to inform a technical decision. This not only
provides them with hands-on experience but also highlights their
importance to the team.

3.​ Mentorship during decision-making: Pair junior engineers with more
experienced team members during decision-making processes. This
mentorship allows them to observe how decisions are made and gradually
take on more responsibility as their confidence and skills grow.

4.​ Feedback on contributions: After involving junior engineers in decisions,
provide feedback on their contributions. Discuss what worked well and
areas where they could improve. This reinforces the learning experience
and shows that their input is valued.

45

5.​ Iterative involvement: Start by involving junior engineers in smaller,
lower-stakes decisions and gradually increase their involvement as they
gain more experience and confidence. This approach helps them build
decision-making skills progressively.

Scenario
You’re leading a large-scale API integration project that impacts both Zillow.com
and the Zillow mobile app. The team is faced with a critical architectural decision:
whether to refactor a legacy system or build a new service from scratch. While
senior engineers are discussing the trade-offs, you recognize an opportunity to
involve Sarah, a junior engineer who recently joined the team.

You approach Sarah and ask for her input on the decision. She hesitates, unsure if
her perspective will add value, but you assure her that fresh insights are often
invaluable. You suggest she lead a small research task, analyzing the technical
and business impacts of both options. Before she starts, you offer her guidance
on how to structure her findings and encourage her to think about not just
technical feasibility but also stakeholder impact and long-term scalability.

Sarah spends the next few days gathering data, researching similar projects, and
discussing potential risks with other engineers. After compiling her analysis, she’s
ready to present her findings. Before the team meeting, you coach her on how to
communicate her ideas concretely, focusing on measurable outcomes like system
performance and developer efficiency. During the meeting, you support her by
asking clarifying questions and guiding the discussion, leading the team to lean
toward creating a new service based on her recommendations.

This process boosts Sarah’s confidence, and she feels more engaged with the
team. More importantly, she trusts you more deeply, knowing you value her input
and are invested in her growth. As the project progresses, Sarah identifies a
potential issue in her part of the implementation—an early assumption in the
design isn’t holding up under real-world conditions. Rather than second-guessing
herself or hesitating, she proactively reaches out to you, clearly articulating the
problem.

Because of the trust and relationship built earlier, Sarah feels comfortable flagging
the issue early. Together, you brainstorm solutions and involve the team, adjusting
the design before the problem grows worse. Had Sarah not reached out, the flaw

46

would likely have gone unnoticed until much later — possibly post-launch —
creating costly delays and impacting user experience.

By involving Sarah early in the decision-making process and creating a strong
relationship, you’ve not only accelerated her growth but also improved the
project’s overall outcome. The trust built through this mentorship results in a
proactive, collaborative approach that prevents costly mistakes and strengthens
the team’s success.

47

Exercise

Think about your relationships with the junior engineers in your org. Are you
helping shape them into better engineers? Have you used any of the
techniques listed? How successful have you been?

Section 2

Building relationships with management

“You use data to bring clarity to contentious issues.” Communication facet

“You are expected to identify, define, socialize, and break down novel problems in your
organizational domain.” Strategy facet

— Zillow Leveling Guide

As a principal engineer, your relationship with your manager evolves into a
partnership where both of you act as force multipliers for the team. While you
proactively drive technical improvements through architecture, coding, and
managing technical debt, your manager focuses on enhancing individual
performance, communication, and collaboration. Together, you should
complement each other’s strengths to create a high-performing organization.

Technique: Managing up
Managing up is key for principal engineers to build strong relationships with
leadership while ensuring their work aligns with broader organizational goals. To
do this effectively, start by understanding your manager’s priorities and how your
efforts contribute to them. In your 1:1s, ask about key objectives and adjust your
approach to ensure your work supports the bigger picture.

When raising concerns, don’t just present problems — offer solutions. This
proactive mindset positions you as a problem solver. Similarly, keep your
communication clear and concise. Focus on the outcomes that matter to your
manager, avoiding unnecessary technical details unless requested.

Seek feedback regularly, not just on technical tasks but on your overall
contribution to organizational goals. Adapting your communication style to suit
your manager’s preferences is also important — some prefer detailed reports,
while others value high-level summaries.

48

Managing up also means driving strategic initiatives that align with company
objectives. Present these initiatives in a way that demonstrates their impact on
both technical and business goals. Sometimes you’ll need to present potential
risks by escalating up. Escalate issues thoughtfully by highlighting risks and also
proposing solutions. Show that you're focused on resolving challenges and not
just complaining about them.

In short, managing up involves aligning with leadership's goals, communicating
effectively, and proactively addressing concerns — ensuring both your success
and that of the organization.

Technique: Getting the most out of a 1:1
One-on-ones with your manager are a powerful tool for building the relationship.
At the principal level, the dynamic shifts into a collaborative partnership, where
you're expected to take initiative and guide the direction more in these meetings.
This shift reflects the increased autonomy and responsibility that comes with a
principal role, where you're not just executing tasks but driving strategy and
influencing broader outcomes.

In your 1:1s, the focus will likely move away from straightforward action items, as
those can be handled efficiently over Slack. Instead, your 1:1s can center on
higher-level strategizing, providing feedback on team dynamics, and discussing
the broader impact of your work. This is an opportunity to align on vision, address
any potential roadblocks, and ensure that both you and your manager are on the
same page regarding your role in driving the team’s technical direction.

Remember, while the fundamentals of a good 1:1 — like preparation and clear
communication — still apply, the expectations at the principal level are
heightened. Your ability to run these meetings effectively will be a key factor in
how well you can leverage your position to influence and shape the direction of
your team and organization.

Scenario
You've noticed a team in your org is consistently accumulating technical debt and
slowing down feature delivery. In your next 1:1 with your manager, you prepare to
discuss the issue by focusing on how it affects your company’s goals. You start

49

the conversation by acknowledging the push for faster releases and business
growth, then highlight how the technical debt threatens both.

Instead of simply raising the problem, you diagnose that the team's struggles are
caused by a poorly-organized code base. The team recognizes this, but has
struggled to prioritize work to refactor. After collaborating with other engineers,
you propose a phased refactoring plan that balances reducing debt with ongoing
feature work. You explain the risks of inaction but emphasize that your solution
will mitigate those risks and ensure long-term system stability.

When your manager expresses concerns about potential delays, you share a
roadmap that maintains momentum on product development while addressing the
underlying technical issues. You focus on delivering outcomes that align with the
organization’s priorities and ask for feedback to ensure your approach fits within
broader objectives.

By the end of the conversation, your manager is on board with your plan,
recognizing your proactive problem-solving and strategic thinking. This
strengthens your relationship and demonstrates your leadership in addressing
both technical and business concerns.

Technique: Status updates and transparent communication

Your status updates and transparent communication are vital components of your
effectiveness as a principal engineer, especially when working closely with
management and leadership. By regularly and clearly communicating, you ensure
that everyone is aligned on your progress, challenges, and next steps. This not
only builds trust but also fosters accountability and enables you to proactively
solve problems before they escalate. When you communicate transparently, you
maintain your credibility and contribute to a culture of openness, where both
successes and setbacks are shared honestly. This approach not only keeps your
projects on track but also strengthens your relationship with leadership,
demonstrating your commitment to the team's and organization's success.

50

Exercise

Write down three key decisions or strategies that you’ve discussed in
recent 1:1s with your manager. Identify the outcomes expected for these
decisions. Are you and your manager aligned?

Best practices for status updates include:

1.​ Be concise and focused. Keep your
status updates concise and focused on
key points. Highlight the most important
developments, including progress made,
current challenges, and any decisions that
need to be made. Avoid overwhelming
leadership with too much detail; instead,
provide a high-level overview with the

option to dive deeper if needed.

2.​ Use data to support updates. Whenever possible, use data to back up your
status updates. Metrics, timelines, and other quantifiable information make
your communication more credible and help leadership quickly grasp the
current state of the project. Visual aids like charts or dashboards can also
be effective in conveying complex information succinctly.

3.​ Highlight risks and challenges. Transparent communication means not
only sharing successes but also being upfront about risks and challenges. If
a project is behind schedule or facing a significant obstacle, address it
openly and provide a plan for mitigation. This approach shows that you are
proactive and committed to finding solutions, rather than avoiding difficult
conversations.

4.​ Be honest about uncertainty. In complex projects, there will inevitably be
unknowns. If there are areas where you lack complete information or where
outcomes are uncertain, be honest about it. Transparency about uncertainty
allows leadership to understand the situation better and provides an
opportunity to discuss contingency plans or additional resources.

5.​ Document and share. After providing a status update, document the key
points and action items, and share them with the relevant stakeholders. This
practice reinforces the message, ensures everyone is on the same page,
and creates a record that can be referred to later.

6.​ Use AI to streamline writing. Large language models (LLMs) can help you
compose or refine status updates more efficiently. They’re especially useful

51

 Antipattern

Avoid providing unfounded answers. It can
be tempting, especially under pressure, to
give a response rather than admit
uncertainty. This approach can lead to
misinformation and erode trust. Be clear
when you don’t know something, and
outline the steps you’ll take to find the
correct answer.

for summarizing project details, tightening language, or brainstorming
phrasing.

Section 3

Building relationships with project stakeholders

“You develop partnerships with key stakeholders, seeking to influence designs across
team boundaries and proactively inform product roadmaps.” Strategy facet

“You participate in the planning rhythms of your organization. You are an expert in your
business domain, shaping technical investments to unlock long-term business
capabilities.” Strategy facet

— Zillow Leveling Guide

Successful software projects require the alignment of technical goals with the
needs of various stakeholders. Building strong relationships with product
managers and other non-technical stakeholders ensures that the engineering
team is delivering value that meets the broader organizational goals. These
relationships are critical for negotiating priorities, managing expectations, and
driving cross-functional design that integrates diverse perspectives.

Technique: Laying the groundwork with nemawashi
Nemawashi is a Japanese term that refers to the informal process of laying the
groundwork for a proposal or decision by engaging key stakeholders and getting
their buy-in before formal discussions begin. You might also hear this referred to
as “the meeting before the meeting”. It’s a powerful technique that principal
engineers can use to build relationships with project stakeholders. Here’s how:

1.​ Early engagement: Have informal, one-on-one conversations with
stakeholders to understand their perspectives and address concerns before
formal discussions begin.

2.​ Tailor proposals: Use insights from early discussions to tailor your
proposal, ensuring it aligns with stakeholders’ concerns and suggestions.

52

3.​ Gradual consensus building: Build consensus gradually through small,
informal discussions, making the formal approval process smoother.

4.​ Reduce resistance: Address potential objections early to minimize
resistance and ensure a smoother decision-making process.

5.​ Strengthen relationships: Demonstrate respect for stakeholders by
involving them early, fostering a collaborative environment, and building
stronger relationships.

Scenario
You’re the principal engineer for a Zillow platform team that has come up with an
idea for a unified logging service to simplify troubleshooting across microservices.
Instead of jumping straight into building, you decide to engage key stakeholders
early to gather feedback and ensure alignment. This nemawashi approach will
help strengthen your proposal and build support before the formal review.

You start by having informal conversations with the SRE team, where you learn
about their struggles with inconsistent logging formats. Next, you reach out to a
principal engineer from a team that heavily uses the existing logging system.
Known for being vocally critical of new initiatives, he challenges the proposal,
raising concerns about performance degradation and the potential impact on his
team’s workflows. You engage in the tough conversation, digging into his pain
points. Rather than avoiding the pushback, you recognize this as an opportunity to
address critical concerns early. His feedback leads you to think more carefully
about system performance and backward compatibility, prompting adjustments to
the design.Following that conversation, you meet with a product manager, who
highlights the importance of a smooth transition plan to avoid disruptions to
current workflows. This reinforces the need for a seamless migration strategy, and
you incorporate a phased rollout approach to ensure minimal disruption.

When you meet with a director of engineering, he expresses skepticism, having
seen similar projects fail due to misalignment. His feedback motivates you to
clearly define the value proposition and include metrics for success in your
proposal. Finally, the principal security engineer raises concerns about privacy,
prompting you to integrate security safeguards into the design early on.

Armed with this feedback, you refine the proposal to address each stakeholder’s
concerns. By the time the formal review happens, discussions flow smoothly —
each stakeholder feels heard, and their needs are addressed. This leads to a

53

strong buy-in across the board, ensuring
the project can move forward without
resistance.

Through this process, you not only
improved the design of the logging
service but also built trust with your
stakeholders. By embracing difficult
conversations and using nemawashi, you
laid the groundwork for both a successful
project and stronger relationships within
the organization.

Technique: Collaborate with PM to understand stakeholder
priorities

Working closely with a product manager is critical for aligning technical decisions
with business goals and ensuring project success. While product managers often
lead stakeholder engagement, it is equally important for Principal Engineers to
have a clear understanding of stakeholder priorities to help drive coherent
technical decisions. Together, this partnership ensures that the project meets or
exceeds stakeholder expectations and helps navigate the complexities of project
execution.

At its core, an organization thrives on the partnership between Product and
Engineering. Sometimes, this relationship can be difficult to navigate. As
engineers, it's natural for us to leap immediately to focus on the problems that
need to be solved — which is easy for other stakeholders to interpret as focusing
on why something can't be done. Feasibility is important, of course, but we must
be mindful to build a constructive relationship.

Try to focus on what's possible given technical constraints. Offer possibilities, and
do so as early in the process as possible. This helps educate others as to the full
range of the trade-offs and strategic options that they can consider. Your partners
will perceive that you are sharing information and offering solutions.

54

 Antipattern

Focusing too much on pushing your own
agenda without genuinely listening to the
needs and concerns of stakeholders can
erode communication and trust, as
stakeholders may feel ignored. To avoid
this, actively engage, ask thoughtful
questions, and understand their concerns.
By seeking alignment and balancing both
your goals and theirs, you create a more
collaborative environment, ultimately
driving better outcomes and building
stronger relationships.

This approach — shifting from feasibility concerns to solution-oriented
discussions — positions you as a key player within the organization. It builds trust,
secures stakeholder buy-in, and demonstrates that you are not just a technical
lead but also a strategic partner, actively contributing to the project’s success. By
encouraging this type of collaboration, you enhance your influence and help
deliver solutions that drive both technical and business success.

Tips for collaborating with project managers

1.​ Strengthen your partnership. Use recurring 1:1s as a time to align on
priorities, share insights into technical constraints, and understand the
broader business context. Regularly discussing project goals, challenges,
and potential trade-offs builds a strong partnership.

2.​ Collaborate on stakeholder interviews. Use this opportunity not only to
align technical strategies with business objectives but also to dig into the
underlying “why” behind their needs. By asking the right questions, you can
address root causes and contribute more effectively to the project’s
success.

3.​ Align on key objectives. Help identify and agree on the key objective.
Ensure that both the technical and business aspects of the project are
aligned with stakeholder goals. Sync regularly to ensure that your
understanding of these objectives is up-to-date and accurate.

4.​ Clarify success metrics. Work together to clarify the success metrics
stakeholders will use to evaluate the project. While the product manager
may focus on business-related metrics, you can ensure that technical
performance metrics are also considered.

5.​ Communicate trade-offs. When trade-offs are necessary, you can
communicate together, to present a unified explanation of why certain
decisions are being made and how they impact different stakeholders. This
coordinated communication builds trust and ensures that stakeholders
understand the reasoning behind both business and technical decisions.

55

Exercise

Think about your relationship with key stakeholders you work with. How
would using the techniques listed above help you in your latest proposal?

Section 4

Building your network

“While you are an expert in your craft, you continue to learn and grow. You relentlessly
seek to better understand the particulars of your dependencies, your customers, and how
to influence others across your organization/the company.” Learning facet

“You share lessons with the larger engineering community.” Operations facet

— Zillow Leveling Guide

While team autonomy can drive ownership and efficiency, other times it can
create silos that lead to misalignment, duplicated efforts, and missed
opportunities. Building relationships across organizations helps break down these
silos, fostering cross-team collaboration and leading to more coherent and
scalable solutions. However, networking shouldn't be limited to just engineers —
it’s equally important to build relationships with key stakeholders such as product
managers, business leaders, and others who can amplify your influence and
impact. These connections open up channels for sharing best practices, learning
from diverse perspectives, and identifying cross-functional opportunities for
innovation that span multiple domains. Engaging with Product, in particular,
ensures that your technical decisions are aligned with the broader business
strategy, driving both technical and organizational success.

Technique: Engage in cross-orginizational initiatives
Building your network outside of your immediate team is essential for broadening
your influence and understanding within the company. One of the most effective
ways to achieve this is by proactively participating in cross-orginizational
initiatives. This could include projects related to company-wide process
improvements, new product development, or strategic initiatives that require input
from multiple teams. These initiatives provide opportunities to collaborate with
colleagues from different groups, share knowledge, and gain insights into the
broader organizational goals and challenges. Additionally, participating in these
initiatives allows you to build relationships with colleagues in other areas of the

56

company. These relationships can be invaluable when seeking support for your
projects or when looking for collaborators for future initiatives.

Strategies for participating in cross-organizational initiatives

1.​ Seek out opportunities. Seek out opportunities to participate in
cross-organizational initiatives. Express your interest to leadership and
colleagues, and be open to contributing wherever your skills are needed.

2.​ Leverage your expertise. When participating in these initiatives, bring your
technical expertise and leadership skills to the table. Be prepared to offer
insights and solutions that align with the goals of the initiative while also
demonstrating your ability to collaborate effectively with others from
different backgrounds.

3.​ Understand organizational priorities. The importance of understanding
priorities was highlighted earlier, and it's even more crucial when stepping
outside your team to offer assistance. Before diving into a
cross-organizational initiative, take the time to understand the broader
organizational priorities and how the initiative aligns with them.

4.​ Follow up and stay connected. After the initiative concludes, maintain the
relationships you’ve built. Follow up with your new contacts, share insights
from the project with your own team, and look for future opportunities to
collaborate. Staying connected helps solidify your expanded network and
keeps you top of mind for future cross-organizational work.

5.​ Engage through innovation events. Innovation-focused events — like
Hack Weeks (Hackathons), Innovation Weeks, or Ship It Days — are great
opportunities to collaborate across team boundaries. They allow you to
prototype ideas, explore new technologies, and work with people outside
your immediate group. These moments often spark deeper cross-org
relationships and can lead to impactful follow-up work.

Technique: Make connections through forums
Internal forums, like dedicated channels on Slack or recurring lunch-and-learn
meetings, are powerful tools for networking, knowledge sharing, and
problem-solving among engineers. As a principal, you should look to actively

57

leverage and engage in forums that exist today to grow your network around the
company.

Start by exploring and engaging in these forums. For example, many companies
have dedicated spaces (at Zillow, we have the #staff_eng Slack channel) for
principal+ engineers to connect, share insights, and discuss challenges specific to
senior engineering roles. Engage there and in other forums by contributing to
discussions, asking questions, and sharing your expertise. Share interesting
articles, pose thought-provoking questions, and join in discussions on others’
contributions.

This increases your visibility to others, making them more likely to reach out to
you to ask questions or engage in discussion. If you welcome and engage warmly
with others when they seek you out, your network will organically grow.

By the same token, don’t hesitate to reach out to others in these forums who
appear to share the same interests or are working on similar problems. A direct
message on Slack is a great way to introduce yourself, and asking to grab a
half-hour to make introductions over a video call is an excellent way to make a
human connection. The forum is a place to find others; how you follow up
determines whether you’ll nurture a more meaningful relationship.

Technique: Leverage relationships to expand your network
Your existing relationships within the organization are valuable assets that can be
leveraged to build and expand your network. By using your existing connections,
you can efficiently connect with colleagues across different teams or
departments, broadening your influence and exposure within the organization.
This approach not only helps you gain access to a wider pool of resources,
including knowledge, expertise, and potential collaborators, but also strengthens
your influence, making you a more integral part of the organization’s engineering
staff.

Tips to leverage relationships to expand your network

●​ Identify strategic connections. Start by identifying who in your current
network could introduce you to others who might be valuable contacts.
Think about the goals you want to achieve — whether it's finding someone

58

with a specific skill set, learning more
about a different department, or gaining
insights into another area of the business.
Reach out to those in your network who
are well-positioned to make these
introductions.

●​ Build on shared interests or goals.
Use your existing relationships to identify
shared interests or goals between
yourself and potential new contacts. For

example, if you and a colleague are both passionate about a particular
technology or approach, they might know others in the organization who
share that passion and could introduce you to them.

●​ Follow through and build new relationships. Once an introduction is made,
it’s important to follow through by actively engaging with the new contact.
Take the time to understand their challenges, offer your help, schedule a 1:1,
and find ways to collaborate. Building a relationship requires effort, so
invest in nurturing these new connections just as you would with your
existing ones.

59

 Antipattern

Focusing solely on self-promotion rather
than genuine relationship building can lead
to superficial relationships that lack trust
and reciprocity, ultimately limiting your
ability to effectively leverage your network.
By focusing too much on self-promotion,
you may miss opportunities to collaborate,
help, and build long-term alliances.

Exercise

Let’s continue to build your network. Think about 3-5 people you would like
to meet. Write those down, and reach out to them directly or ask someone
in your network to make the introductions.

Part III

Leveraging influence

Influence is the ability to intentionally shape — without direct authority — the
behavior or attitudes of others. Influence is carefully accrued over time by building
trust, demonstrating expertise, and effectively communicating ideas to inspire and
guide. The ability to influence others is central to your long-term ability to create
impact. It doesn't matter how good your ideas are if you cannot influence others
to embrace those ideas and act upon them.

Influence differs from persuasion, which is more tactical and direct. Both
persuasion and influence are essential skills for a principal engineer, but influence
is more broadly impactful and enduring. Unlike persuasion, influence relies on
long-term relationships and a consistent demonstration of value, and can
sometimes be more subtle. It takes time and great care to cultivate the seeds of
influence, and it can be frustratingly slow before you begin to see the fruits of
your labor, but the results are often more substantial and lasting.

Influencing down, up, out, and across
Principal engineers are further removed from project execution than junior
engineers and lack the direct reports of a manager, but they’re expected to drive
broad, lasting impact. That’s where influence enters the picture. By working
through others, principal engineers can drive outcomes far beyond what they
could achieve on their own.

Earlier we discussed how to grow and strengthen your influence by building
relationships. Now we’ll cover how to effectively leverage your influence to create
change. The first section will discuss how to drive cultural change, and the
second section will explore techniques for driving change on large technical
projects. You can think of the first section as influencing within your organization
and the second section as influencing outside it, but the techniques in each
section can often be applied more broadly.

60

Section 1

Cultivating a standard of excellence

“To your team(s), you set a tenor of excellence: you are skilled at upholding a high-quality
bar without alienating others, seeking to cultivate and mentor.” Leadership facet

“You are the engineering face for your team(s): Principal Engineers, Product Managers,
and others all seek you out and trust you to represent the technical capabilities and
constraints of your space.” Leadership facet

“You understand that your impact scales with your influence: you cannot uphold these
standards solo, but instead must rely on the team to embody them even when you’re not
looking.” Leadership facet

— Zillow Leveling Guide

Driving cultural change within an organization requires intentional effort and
strategic direction. This section explores practical techniques for creating and
sustaining an engineering culture that prioritizes quality, innovation, and
continuous improvement.

Technique: Lead by example
As a principal engineer, your actions and behaviors influence the behaviors of
those around you. By virtue of your title, you are a role model to junior engineers.
Your title signifies that your company has entrusted you with leadership
responsibilities, and others will observe your actions accordingly. What you do
and how you do it will set the standard for others to emulate, and they in turn are
likely to model those behaviors to their colleagues, creating a ripple effect that can
change the overall engineering culture. If you’re intentional about your goals, your
words and actions become a powerful tool to influence others. For example, by
showing dedication to quality and teamwork, you foster a culture where high
standards are the norm.

By the same token, setting a poor example can be contagious as well. If you
neglect operational excellence, those around you are likely to do the same. If you
don’t prioritize thorough design documentation, it will be challenging to persuade

61

others to invest effort in their designs. If you are combative and quick to criticize,
you’ll struggle to foster collaboration. Ineffectiveness can diminish your own
credibility, causing others to take your words and actions less seriously. To
effectively influence others, you must first set a good example.

Key practices when leading by example

●​ Lead with conviction. When you act decisively, even in the face of
ambiguity, you show others how to navigate uncertainty with purpose. Your
decisiveness minimizes unnecessary delays and fosters a culture of
progress and purpose.

●​ Be open and encourage feedback. By actively seeking and valuing
feedback, you create an environment where learning and continuous
improvement are prioritized. This openness creates the psychological
safety for others to voice concerns, suggest ideas, and engage in
constructive disagreements — which in turn leads to better outcomes and a
more collaborative team culture.

●​ Listen and ask questions. Active listening and curiosity shows that you
value the perspectives of others. This approach not only promotes
openness and transparency but also helps to surface hidden issues or
innovative ideas.

●​ Bias toward action. Show a proactive attitude by taking initiative and
addressing issues head-on. Similar to leading with conviction, this approach
promotes efficient problem solving and encourages your colleagues to
adopt a similar mindset.

●​ Push back on incomplete requirements and poor assumptions. By
challenging incomplete or flawed assumptions — and encouraging others to
do the same — you mitigate risk and promote more vigorous design
thinking.

●​ Practice articulate and timely communication. Helps prevent
misunderstanding, keeps projects on track, and fosters a more collaborative
work environment.

Leading by example doesn’t mean you must be perfect! Owning mistakes can be a
powerful example as well. It encourages others to take ownership of their own
actions and helps foster an environment where it’s safe to take risks and ask for

62

help. Acknowledging your own weaknesses builds trust and demonstrates that
leadership is about progress, not flawlessness.

Scenario
You’re the principal engineer responsible for several systems that support the
search experience. It's Friday afternoon and one of your teams is under pressure
to deliver a new feature before the weekend. Alerts suddenly indicate the search
experience is intermittently failing, frustrating users. Recognizing the urgency, you
see this as a critical moment to guide the team through the resolution process and
to lead by example.

You reach out to the junior engineer who is on call and has been investigating the
issue. The engineer is unsure whether a recent code change might be the root
cause of the issue and suggests rolling back as a potential fix. However, the
engineering manager, reluctant to miss the end-of-week deadline, suggests
investigating further before making any decisions.

Sensing the junior developer’s uncertainty, you engage with her directly, asking
for her thoughts on the situation. She carefully outlines the pros and cons of
rolling back versus continuing to investigate. Acknowledging both sides, you
emphasize the importance of system stability and user experience, and suggest
bias toward rollback as a best practice. You explain that although further
investigation might pinpoint the exact issue, the risk of ongoing user frustration
and potential escalation outweighs the benefit of a potential quick fix. Your
reasoning resonates with the junior developer, who feels valued and supported in
her decision-making process.

With your support, the junior developer presents the rollback recommendation
again. Initially the manager resists, concerned about missing the deadline.
However when you stand firmly behind the junior’s assessment, the manager
relents, recognizing the need for caution and the value of your experience.

While the developer initiates the rollback, you keep stakeholders informed of
progress and answer questions in the incident Slack channel. This approach not
only reinforces the importance of clear communication but also frees the junior
developer to focus on mitigating the issue. The roll back restores the search
systems to a stable state and users are able to search for homes again.

63

On Monday morning, the team gathers to
write the root cause analysis (RCA). The
junior developer identifies the code defect
and writes a fix. You review the
preliminary RCA and the code change.
You provide feedback, focusing on clarity
and completeness, before giving the
green light to release the feature the next
day.

Throughout this process, you’ve
demonstrated the importance of decisive
action balanced with thoughtful
consideration. By supporting your team
and making the right call under pressure,

you not only resolved a critical issue but also modeled a leadership style rooted in
care, conviction, and collaboration. This experience reinforces your role as a
trusted leader and helps build a culture where both urgency and quality are held in
high regard.

Technique: Pave the way
A principal engineer’s influence extends beyond direct interactions and decisions.
It permeates through the tools, processes, and standards you help establish,
which will guide and shape the work of others, even in your absence. Two
powerful concepts that enable this kind of influence are “paved roads” and
“guardrails.”

Paved roads refer to the preferred practices or tools that are well-supported, easy
to follow, and designed to encourage best practices. A paved road might be a tool
for testing, deployment, or monitoring. It could be a template for technical
documentation, architectural patterns, or coding standards. When you create
paved roads, you guide others toward effective solutions, reducing friction and
avoiding common pitfalls. By making the right thing easy to do, you influence
others’ choices and behaviors, driving consistency and quality across the
organization.

The hallmarks of a paved road are:

64

 Antipattern

Building a platform can be a powerful way
to enable teams and drive consistency —
but it’s also a major investment of time and
resources. It shouldn’t be pursued by
default or for its own sake. Often, the goals
of a “paved road” can be met more
efficiently through simpler, lighter-weight
solutions, such as well-documented
templates, reusable libraries, or clear best
practices. Before deciding to build a
platform, carefully consider whether the
problem truly calls for one, and whether
your proposed solution will be broadly
adopted and maintained over time.

●​ Self-service tools or well-documented guidance

●​ Ease of adoption

●​ Enforcement of best practices for common use cases

●​ Optional, allowing the developer to go “off-road” when needed

A paved road can be especially powerful when paired with the closely-related
concept of guardrails, constraints or procedural hindrances that ensure engineers
don’t veer off course. They establish boundaries within which engineers have the
freedom to operate, while still maintaining alignment with accepted standards.
Guardrails might include automated testing, security policies, or linters. Guardrails
can also be procedural: merge request policies, design approval processes, or
documentation standards. Guardrails prevent costly mistakes, technical debt, or
divergence from best practices by clearly defining what should not be done.

The hallmarks of guardrails are:

●​ Enforced standards

●​ Simple, not overly restrictive

●​ Define boundaries of acceptable practices

●​ Provide flexibility within constraints

While a paved road makes it easy for an engineer to do the right thing, guardrails
make it harder for them to do the wrong thing. Paved roads offer guidance on the
how, guardrails enforce the what not. Together they create a framework that
influences others’ actions and decisions, enabling you to steer the technical
direction of your organization even when you’re not directly involved. Look to
create paved roads and guardrails for your engineers as these can be an effective
and enduring way to cultivate high standards of engineering excellence.

Scenario
Following the resolution of the search functionality issue, you recognize the need
to prevent similar problems in the future. To “pave the way” for smoother
development and operations, you look for ways to implement paved roads and
guardrails within the existing engineering processes.

65

When your system was down, aggressive retries by one of the dependent
systems had caused a cascading failure. The retries themselves had overwhelmed
your system and delayed recovery. To create a paved road, you propose the
adoption of an open-source HTTP client that uses a circuit breaker pattern with
exponential backoff to provide more resilience. You work closely with the junior
engineer who was on-call during the incident, to integrate the new HTTP client
library into the dependent system. Together, you craft clear documentation
explaining the library's value and provide example use cases to accelerate its
adoption. It quickly becomes the standard client library for your teams, ingraining
resilience into the day-to-day development process of your team.

Next, you introduce guardrails by identifying that static code analysis could have
spotted the code defect before it reached production. You introduce a linter in the
CI/CD pipeline to flag potential issues in the future and hold training sessions for
the teams to understand how to use it effectively. By implementing automated
safeguards, you’ve helped the teams work more effectively, reduced the risk of
errors, and promoted a culture of excellence. Your proactive approach ensures
that the system remains robust and that engineers can focus more of their time on
meeting business objectives, rather than firefighting production issues.

Technique: Amplify success
When thinking about advancing cultural change, it’s easy to focus on the gaps
where we’re falling short of the technical excellence we expect of our
organization, but one of the most effective strategies for driving change as a
principal engineer is to amplify success. Identifying and leveraging existing
successes can spread their impact, build momentum, and influence broader
change.

Amplifying success is about recognizing where something is working well and
strategically expanding its influence. Whether you’re spotlighting a successful
project within your organization, drawing from best practices in another org, or
looking outside the company for inspiration, the key is to harness that success as
a catalyst for broader change. This approach not only spreads effective practices
but also creates a positive feedback loop, where each new success paves the
way for the next, further strengthening engineering culture.

66

Although there are no rigid set of steps for amplifying success, the general
approach might look something like this:

1.​ Identify success stories. Look for instances where teams or individuals are
excelling, whether in productivity, innovation, quality, or any other relevant
dimension. Success can be found internally or externally — don’t limit
yourself to only what’s been done within your organization. Building a
strong professional network helps you identify these success stories more
easily.

2.​ Understand success drivers. Once you’ve identified a success, dig deeper
to understand what’s driving it. This could involve direct conversations,
gathering feedback, or informal observations. Look for actionable insights
— key practices, tools, or processes — that others could replicate.

3.​ Develop a plan. With a clear understanding of what made the success
possible, create a plan to share and scale those practices. Tailor your
approach to the needs of your audience. This might involve creating
workshops, writing guides, or organizing presentations. The goal is to make
it easy for others to adopt these successful practices.

4.​ Recruit champions. Invite others to help lead the cultural change.
Whenever possible enlist the help of those who were directly involved in the
original success. Their firsthand experience lends them credibility and
makes them effective advocates for spreading the practice. If the advocates
are from your company, it may be a valuable leadership opportunity for
them, and you can provide coaching as needed. You can also step into the
champion role yourself, demonstrating your commitment and conviction —
especially when the success comes from individuals or teams outside your
company.

5.​ Share, monitor, and support. Now it’s time to execute on the plan. As you
roll it out, keep a close eye on its impact. Encourage feedback, celebrate
wins, and be prepared to adjust your approach as needed. Driving cultural
change isn’t a one-time event — it’s an ongoing process that requires
nurturing and support to truly take root.

Scenario
After your teams adopt the HTTP client library, you notice significant
improvements in system stability and performance. Recognizing the potential for

67

broader impact, you set out to amplify this success by promoting the use of the
library to the broader organization.

Working with the junior engineer again, you start by gathering metrics to
demonstrate the positive impact of the new HTTP client library: reduced
downtime, fewer cascading failures, and improved incident recovery times. You
also collect feedback from developers on its ease of use. You and the junior
engineer create a presentation for an upcoming all-hands engineering meeting of
your org. Together, you share the metrics and tell the success story, clearly
articulating the value the library has brought to your team’s systems. You
encourage other teams in the organization to adopt the library to achieve greater
system resilience, and offer to be a resource to engineers who have questions.

Over time, more teams adopt the library, leading to widespread improvements in
system stability and performance. By amplifying the initial success, you’ve had a
wider impact and you’ve also fostered an engineering culture that learns and
grows from previous mistakes. You’ve celebrated a collective victory, recognized
the contributions of a colleague, and given that colleague an opportunity for
greater visibility and leadership that can continue to provide value in the future.

Technique: Build communities of technical excellence
Engineering rituals can be powerful tools for driving and sustaining cultural
change. They help you keep a pulse on your organization and better represent its
interests to others, and they allow you to influence and shape the engineering
culture within your organization. These rituals do more than just uphold quality —
they create habits that become ingrained in the engineering ethos, ensuring high
standards are maintained even when you're not directly involved. As these
practices take root, they build momentum, creating a virtuous cycle of
self-improvement. Over time, this cultivates a culture of constant learning and
empowers others to take ownership of these practices themselves, ensuring that
the culture endures.

Some common engineering rituals:

●​ Design reviews - Structured sessions where engineers present their design
proposals to peers for feedback. By bringing together diverse perspectives,
design reviews expose engineers to different patterns and approaches,
helping them spot issues or improvements they might have otherwise

68

missed. Effective for promoting
architectural best practices, catching
potential issues early, and staying
up-to-date with the architectural
landscape and capabilities.

●​ Root cause analysis (RCA) -
Process for identifying the underlying
reasons for defects or failures, and
planning future mitigations. Useful to

prevent recurring issues, improve operational rigor, and foster a culture of
continuous improvement.

●​ Project retrospectives - Meetings held after project milestones to reflect on
what went well and what could be improved. Drives team improvements,
shares lessons learned, and enhances future project execution.

●​ Operational metric reviews - Regularly analyzing key performance
indicators (KPIs) to assess system health and performance. Conducted to
identify trends, improve observability, and promote operational excellence.

●​ Enterprise architecture groups - Collaboration of technical leaders to
define and maintain technical strategy. Aligns technical decision-making
with strategic initiatives and encourages cohesive system architecture.

●​ Knowledge share sessions - Informal sessions (e.g. lunch and learn, coffee
chat, innovation hour) where peers share research, ideas, or experiences
on various technical topics. Fosters continuous learning, innovation, and a
collaborative culture.

●​ Work-in-progress sharing - Regular informal demos of ongoing work to
peers and stakeholders, often at the team or organizational level. Effective
for gathering feedback, promoting collaboration, and celebrating progress.

●​ Guilds - Communities of practice focused around a specific technical
interest or skill, often in a way that cuts across organizational boundaries
(e.g. DevOps, DataBricks, front-end development). Facilitates knowledge
sharing, innovation, and development of best practices.

69

 Antipattern

Another pointless meeting: Be mindful that
engineering rituals should provide value
relative to the time they take. If a ritual is
not delivering the desired impact, don’t be
afraid to change cadence, format, or even
disband as needed. The focus should be
on effectiveness.

Scenario
You see an opportunity to enhance the engineering culture and amplify success
stories by introducing a new monthly lunch-and-learn series focused on
engineering best practices and operational excellence. For the inaugural session
you plan a presentation focused on the incident that sparked the resiliency
improvements. To empower and recognize emerging talent, you ask your junior
colleague to lead the session and talk about being on call and playing a crucial
role in the resilience improvements. You provide coaching and support in advance
to ensure the first session is a success. The lunch-and-learn series continues,
with engineers sharing their own lessons learned and ideas for improving
engineering culture. These sessions not only provide valuable learning
opportunities but foster a sense of community and collaboration across the
organization.

You reflect back on the progress you’ve made and the impact you’ve had. By
consistently and intentionally leveraging your influence, you’ve set into motion a
cascade of improvements. Working through others, you’ve transformed a
localized issue into a driving force for widespread cultural change, embedding
principles of excellence, collaboration, and resilience across your organization.

Section 2

Driving impact through collaboration

“You actively promote and model collaboration, listening to feedback from others and
successfully mediating contentious technical discussions.” Leadership facet

“You cultivate collaboration, listening to and integrating feedback across all levels.”
Communication facet

70

Exercise

Reflect on a time when you tried to influence a cultural change within your
teams or organization. What techniques did you use? Any of these? What
was challenging? What was most successful?

“You demonstrate effective verbal and written skills, communicating with everyone from
the junior-most engineer to the senior leaders of your organization.” Communication facet

— Zillow Leveling Guide

This section explores techniques for collaborative problem-solving when the
technical challenge spans many areas of ownership and requires coordination
across groups.

Technique: Lead technical working groups
As a Principal Engineer, you’ll often be tasked with solving technical problems that
span teams or even organizations. When a technical challenge spans many areas
of ownership, consider establishing a technical working group (TWG). A TWG is a
temporary team formed to collaborate and rapidly address a particular technical
challenge. The technical challenge could be designing a new product capability,
migrating off a legacy technical system, or addressing a recurring source of
developer friction.

When establishing a TWG, you’ll want to clearly document the technical challenge
and identify clear, measurable goals for success. Having a shared understanding
of what success looks like is imperative to successfully addressing the problem.

Then you’ll want to identify the right stakeholders to contribute to the solution.
Having a wide professional network can accelerate finding the key contributors.
You may need to meet with potential participants to identify who is best situated to
address the problem and has the bandwidth to take on the commitments of the
TWG. You don’t need to include every expert — just those who know enough to
identify when and whom to bring in for specialized input. You’ll want a group that
is large enough to represent the full scope of the problem being solved and
typically no larger — having too many participants can encumber collaboration
and slow decision making.

Some tips for running a successful technical working group

●​ Designate a directly responsible individual to lead the group. They should
be skilled at meeting facilitation. This ensures that meetings are focused,
decisions are made, and action items are followed through on.

71

●​ Set a regular meeting cadence to ensure teams are collaborating in a timely
and effective manner.

●​ Set clear objectives before each meeting to keep the discussions focused
and productive.

●​ Document decisions and action items. Follow up on these items in
subsequent meetings to maintain accountability and progress.

●​ Establish standard communication tools and practices to minimize
miscommunication and keep everyone informed. Some possibilities to
consider: a project Slack channel, shared Google drive, and/or main Google
document that links out to supporting materials.

Scenario
You’re a principal engineer in the newly-minted Home Renovation organization.
One of your first tasks is to help build a new user experience connecting
homeowners with home renovation professionals, which will require coordination
with several different engineering organizations. You work with product managers
to gain insights into the business objectives and desired features for the
contractor connection experience. With this knowledge, you meet with
engineering managers and principal engineers to understand which teams need to
be involved, their level of engagement in this new product offering, and to identify
the best representatives for a technical working group.

Once the key stakeholders are identified, you work with your product partner(s) to
document the goals and deliverables of the working group, following up when
requirements are unclear. Together you document the objective: to create a
seamless experience for homeowners to find, evaluate, and connect with
reputable home renovation professionals. You set up an initial kickoff meeting to
align everyone on the shared vision and ask teams to commit to an initial tech
design and scoping, establishing a timeline and clear responsibilities for each
team member.

As the working group progresses, a significant technical conflict arises. The
existing monolithic architecture supports critical functionalities like user
authentication, appointment scheduling, and search capabilities. Your teams
suggest that to support the scalability and flexibility required for the new features
it would be beneficial to break them into microservices, allowing them to scale
independently and ensure long-term maintainability. Some of the backend teams

72

contend that leveraging the existing monolith would enable the project to ship
more quickly, meeting the immediate market need with fewer initial disruptions.

Recognizing the need for a focused effort to resolve these issues, you decide to
continue the discussion in a separate meeting to delve deeper into the technical
trade-offs and to seek resolution — and the legwork you’ve put in to bring
together the relevant stakeholders has laid the foundation for further collaboration
and provided a forum where you can exert influence, even without direct
authority. We’ll pick up this scenario again after the next section which will
address methods for resolving technical conflict.

Technique: Resolve technical conflict
Conflicts can arise when collaborating across teams on a technical project. Others
will often look to you as a principal engineer to resolve these conflicts in a positive
and timely way. Propelling a project past stumbling blocks and friction can be
some of the highest leverage activities you can undertake to have a broad impact.
In this section we’ll explore some practical techniques to address technical
conflict, and some common situations where they can be helpful.

Even without direct authority, the principal engineer has a wide menu of
techniques to choose from when resolving technical conflicts. Here are some
common ones (and this list is by no means exhaustive):

Understand the problem

●​ Ask why. Get to the root of the business problem by asking: “What’s the
business value?” and “What problem are we trying to solve?” Similar to the
five whys of a root cause analysis, keep asking until you get to the
underlying needs and objectives.

●​ Understand stakeholder motivations. Be curious and ask questions about
the perspectives and motivations of stakeholders. Try to appreciate the
human aspects of the problem. In addition to better understanding the
problem, this builds trust and opens up constructive dialogue.

Create shared understanding

73

●​ Frame (or reframe) the problem. Clearly document and define the problem,
capturing the primary dimensions of the problem, possible resolutions, and
their tradeoffs. This helps create a shared understanding and makes it
easier to collectively problem-solve.

●​ Decompose the problem. Break a large, complex problem into smaller,
manageable subproblems. Then prioritize the most critical aspects first.
This makes the work less daunting and more achievable.

●​ Use a proof of concept. Discussed in detail in part one, developing a
small-scale version of a solution can help test the feasibility of an idea
without committing significant resources.

Approach the problem differently

●​ Resequence the work. Change the order of tasks in the project to reduce
bottlenecks or dependencies. This can help streamline the workflow and
improve efficiency.

●​ Recruit an away team. Temporarily assign engineers from another team to
help with the work. This requires a well-defined scope of work and clear
hand-offs when spinning up and spinning down the away team. Note
however that adding people to a project may initially slow it down before it
speeds up, and that not all work can be easily parallelized.

Make a decision

●​ Persuade with data. Use data to inform and support decision-making. This
adds an objective perspective that can help resolve disagreement.

●​ Bias toward action. Encourage moving forward with decisions when faced
with uncertainty. Taking action, even if imperfect, can often lead to further
clarity, if not progress. This technique pairs well with seeking two-way
doors, which was discussed in part one.

●​ Escalate. Present choices to leadership to differentiate between competing
options. Be a good partner and use escalation, not to lay blame, but to gain
clarity on prioritization and resource allocation.

The right technique for resolving technical conflict depends on the specific
dynamics of the situation. As a principal engineer, you’re expected to exercise

74

sound judgment in selecting the most appropriate tool to influence a positive
resolution. This ability to discern and apply the right approach improves with
experience and is a key marker of your leadership.

Below are some common situations in which technical conflict can arise and some
possible approaches you could take to resolve them. You might use one or more
of the techniques in combination.

When there are two or more competing technical approaches and uncertainty
about which one is best:

●​ Frame the problem. Carefully document the approaches and their
differences, highlighting tradeoffs between them. With this shared
understanding, facilitate a discussion to arrive at the best course of action.

●​ Use a proof of concept. Create a proof of concept for one or more
approaches, then leverage these to make a more informed decision about
which is better.

●​ Bias toward action. Perhaps one of these approaches is a two-way door
and it’s better to make forward progress than deliberate in the hopes of
gaining greater certainty.

When one or more teams’ resource constraints cause bottlenecks that slow
down project progress:

●​ Understand stakeholder motivations. Talk with resource-constrained
teams to understand the source of the delays; the root problem may be one
of these other common technical conflicts.

●​ Resequence the work. Can the work be ordered differently so that the
resource-constrained team is not an immediate project dependency so the
group can deliver on the business objectives more efficiently?

●​ Recruit an away team. Perhaps you or another team can offer assistance to
accelerate the work by doing initial development and handing off
afterwards.

●​ Escalate. Consider escalating to leadership to request additional resources
or time.

75

When two or more groups must collaborate on a body of work, but have
diverging priorities that make that work high priority for one and low priority for
the other:

●​ Ask why Clarify the business value of the project and ensure all parties
understand how the work contributes to the company’s objectives.

●​ Understand stakeholder motivations. Work to understand the impact and
importance of competing priorities, keeping an open mind to the possibility
that the project you’re invested in may be the lower priority.

●​ Frame the problem. Ensure that all parties recognize the scope of work that
is being requested. If the scope of work is small enough, perhaps a team
can be persuaded to deliver work it considers to be lower priority to
unblock the other teams, before embarking on their higher priority work.

●​ Recruit an away team - Can engineers be lent to the partner team’s higher
priority work, freeing up resources for them to work on your priority?

●​ Escalate. Ask leadership to clarify which is a higher priority for the
business.

Scenario
As the discussion around the architectural approach for the new home renovation
experience heats up, the conflict between the two opposing viewpoints — sticking
with the existing monolith versus breaking the functionality into microservices —
becomes more pronounced. The backend teams are firm in their belief that the
monolithic architecture, though older, provides a stable foundation and allows the
project to meet immediate deadlines. Your teams on the other hand argue that
breaking the features into microservices will ensure future flexibility and better
support the expected growth of the platform.

Understanding that this conflict could stall the project and create rifts between the
teams, you decide to step in and mediate the discussion. Your first step is to
understand the stakeholder motivations behind each stance. You schedule
one-on-one discussions with the key representatives from both sides to get a
clearer picture of their concerns. The backend teams are primarily concerned with
delivery timelines and minimizing disruption to the current user experience. Your
teams are more concerned with the long-term technical debt and future-proofing
the system. This insight helps you see that the disagreement is not just about the

76

architecture itself but also about differing priorities — short-term delivery versus
long-term maintainability.

With this understanding, you bring the group back together and frame the
problem in a way that highlights the underlying concerns. You articulate the
challenge not only as a choice between two architectures but as a broader issue
of balancing immediate business needs with future scalability and maintainability.
This helps to depersonalize the debate and focus on the core issues at hand. You
help the teams see that the decision is not only a technical one but also a strategic
business decision that requires weighing various trade-offs.

Next, you propose to decompose the problem: instead of deciding the entire
architecture upfront, the working group could focus on breaking down the most
critical components for the new home renovation experience, such as user
authentication and appointment scheduling, into microservices while keeping
other, less critical functionality within the monolith. This hybrid approach serves
as a compromise, allowing teams to begin with a more scalable architecture in
critical areas while maintaining stability and speed of delivery. By breaking down
the problem you’ve reduced the perceived upfront cost and made the migration
feel more manageable.

As the meeting concludes, the tension eases and you guide the group toward a
consensus of moving forward with a hybrid approach. In resolving this conflict
you’ve kept the project on track and maintained positive working relationships
between the teams by honoring their individual perspectives. You’ve leveraged
your influence to resolve a technical dispute while balancing both the technical
and business needs of the group — and modeled effective collaborative
problem-solving.

Technique: Communicate with clarity
A principal engineer’s ability to influence depends on how clearly they
communicate. Whether you’re writing a document or speaking in person, strong
communication skills are key to conveying complex technical concepts to diverse
audiences, driving alignment across disparate groups, and facilitating
collaborative decision-making.

Four techniques for effective communication

77

1.​ Tailor your message to your audience. Before you craft your

communication, have a target audience in mind and understand their unique
perspective and needs. Frame your message in a way that will resonate
with them. For example, when communicating with:

○​ Senior leadership, focus on the big picture, emphasizing the impact
and return on investment. Address risk and mitigation strategies.
Quantify the costs, including team capacity. Leadership’s time is
especially valuable, so be succinct, to the point, and leave room for
questions.

○​ Engineers, explain the why and how, providing detailed information
that encourages feedback and collaborative problem-solving. Engage
engineers in crafting the communication when possible to ensure
thorough understanding and buy-in.

○​ Product managers, speak to the user impact and business value.
Simplify technical jargon and concepts, highlighting how the technical
aspects support the product vision and address user needs. When
discussing trade-offs, address not only user outcomes but also the
impact on delivery schedules and timelines.

2.​ Use the inverted pyramid. This concept originates in journalism, and refers
to starting with the most important idea (typically the purpose or objective
of your communication), followed by the next-most crucial concepts, such
as background information and context. Continue to present ideas in order
of diminishing importance, ending with the most specific details. This
approach ensures that your audience grasps the core message quickly. It’s
especially useful in written communication since readers may stop after
reading the first few lines if it’s unclear how the content is relevant to them.

3.​ Leverage data to persuade. Use data to weave a compelling narrative that
informs and persuades your audience. Present clear, concise metrics to
support your arguments, explaining how they were collected and the
context to interpret them accurately. Visual aids like charts and graphs can
be particularly effective in illustrating key points and trends.

4.​ Encourage feedback. Create opportunities for your audience to ask
questions and provide feedback. This not only enhances their

78

understanding but also provides you with valuable perspectives that can
better inform the outcome you hope to achieve.

Scenario
With the general approach defined and some preliminary technical design
outlined, it’s time to update engineering leadership on the direction and progress
of the working group. You set out to craft a presentation that effectively
communicates the working group’s decisions and future plans. This presentation
will be crucial in ensuring that leadership understands the strategic direction,
supports the next steps, and provides any necessary feedback to guide the
project forward.

You begin by carefully tailoring your message to your audience. Engineering
leadership is primarily concerned with the big picture: how the project aligns with
overall business objectives, the risks involved, and whether the team is on track to
deliver value. With this in mind, you focus on presenting the strategic decisions
made by the working group, such as the hybrid approach to architecture and how
this will enable timely delivery and long-term maintainability.

You structure your presentation using the inverted pyramid technique. You start
with the most critical information: the working group has aligned on a hybrid
architectural approach. You explain that the team has made initial progress on
designing core features, and you highlight how these decisions align with the
business objectives. Next you provide the context that led to these decisions, the
technical conflict that was resolved, the trade-offs considered, and the rationale
behind the chosen architecture. By framing the problem and solution clearly, you
help leadership understand the thought process behind the decisions and build
confidence in the direction the project is taking. Finally, you dive into the specific
details, such as major design and development milestones and the metrics the
project will use to evaluate success. You ensure that the more detailed design
outlines are available for those who want to dig deeper, but keep the focus on the
strategic overview, knowing that this is where leadership’s primary interest lies.

Throughout your presentation, you actively encourage feedback from the
leadership team. At the end of the presentation, you invite them to share any
remaining concerns or questions they may have, demonstrating a commitment to
transparency and creating an opportunity to gather valuable insights.

79

As the presentation concludes, the leadership team expresses their appreciation
for the clear and concise update. They feel confident in the direction the project is
taking and value your willingness to seek their input. By communicating clearly
and effectively, you’ve not only provided leadership with a successful update but
also strengthened your own influence with the leadership team.

Technique: Collaborative writing for shared understanding
Principal engineers often lead complex projects that need input from many
different voices, each with their own expertise and perspective. Asynchronous
collaborative writing is an essential tool for bringing those voices together and
creating shared understanding. By shaping how ideas are captured, shared, and
refined, you can play a pivotal role in aligning teams around common goals and
driving consensus.

Collaborative documents — such as design docs, decision memos, or project
briefs — are powerful tools for aligning teams, clarifying intent, and capturing
institutional knowledge. Your ability to guide these writing efforts is critical to
influencing others and leading high-impact work.

Today, large language models (LLMs) can help streamline this process. Use them
to draft initial outlines, reframe complex ideas, or rephrase content for different
audiences. When used thoughtfully, these tools can make your writing more clear,
structured, and inclusive — especially in early drafts, when shared understanding
matters most.

Following are some other tips which we have found helpful when authoring
documents for a shared audience.

●​ Have a single pen holder. Assign a directly responsible individual (DRI) to
oversee the document. This person ensures consistency in structure and
voice, resolves disputes, and keeps the document development on track.

●​ Have clear areas of ownership. When different sections of the document
require different ownership (e.g. a broad design document that spans
several organizations), clearly indicate ownership of each section. This
helps prevent overlap, ensures accountability, and allows contributors to
focus on their specific area of expertise. Linking out to more detailed
documents can also provide depth without cluttering the main document.

80

●​ Set deadlines. Establish clear deadlines for each phase of the document’s
development: initial drafts, feedback, revisions, and finalization. Document
these commitments and communicate them clearly to stakeholders.

●​ Indicate document status. At the top of the document indicate whether the
document is a “work in progress” or “requesting feedback.” This
transparency helps manage expectations and guides readers on how they
should engage with the content.

●​ Be responsive. Address questions and feedback promptly. Resolve
comments to keep the document from getting too cluttered, but only after
the feedback has been incorporated into the main document so it can first
benefit those with similar queries.

●​ Follow up. If you’re not getting the engagement you expect, reach out to
relevant stakeholders. Sometimes scheduling a meeting to discuss and
resolve lingering issues can be more effective than waiting for written
responses.

●​ Subscribe to notifications. Sign up for notifications of document or
comment changes and encourage contributors to do the same. In Google
Docs, for example, you can make this change in your notification
preferences.

●​ Leverage permissions effectively. Start with broad access for feedback,
then tighten permissions as the document nears completion. Alternatively,
you might begin with a small group of reviewers, opening it up more broadly
after the general structure has firmed up. Adjusting permissions
strategically ensures that the right people are involved at the right time.

81

Exercise

Think about a time when you tried to influence decision making in a group
that spanned many areas of ownership. What techniques did you use?
Were you successful? If not, why do you think that is?

Part IV

Scaling yourself

“Impact is paramount, and you must scale. Sometimes, your impact will be greatest when
you go deep to author critical code or uncover a subtle flaw; at other times, your impact
will be greatest when you act broadly to shape approaches across several teams or
systems.”

“You understand that your impact scales with your influence: you cannot uphold these
standards solo, but instead must rely on the team to embody them even when you’re not
looking.” Leadership facet

— Zillow Leveling Guide

Scaling yourself as a principal means maximizing your impact without
overstretching your scarce time, energy, and influence. Operating at larger scales
can be challenging: ambiguity increases, trade-offs become more difficult to
identify, and feedback loops lengthen.

The Eisenhower matrix, also known as the urgent-important matrix, is a powerful
tool for prioritizing tasks and managing time effectively. Named after Dwight D.
Eisenhower, the 34th President of the United States, this matrix helps you focus
on what matters by categorizing tasks based on:

●​ Urgency: When the task needs to be done.

●​ Importance: The value delivered by accomplishing the task.

82

 Urgent Not urgent

Important Do

Tasks with deadlines or
consequences

1

Schedule

Tasks that contribute to
long-term success but have
unclear deadlines

2

Not important Delegate

Tasks that must get done but
which don’t require your
specific skill set

3

Delete

Distractions and
unnecessary tasks

4

The matrix is divided into four quadrants:

1.​ Urgent and Important – Do
Tasks in this quadrant require immediate attention and are critical to
achieving significant organizational goals. These are often crises,
deadlines, or problems that need to be resolved promptly, such as ongoing
operational events or end-of-quarter deliverables.

2.​ Important but Not urgent – Schedule
These tasks are crucial for long-term success but do not require immediate
action. Activities here include many of those discussed throughout this
book: strategic planning, relationship building, long-term thinking, building
communities of technical excellence, and so on.

3.​ Urgent but Not important – Delegate
Tasks in this quadrant are often distractions that require immediate attention
but do not contribute significantly to long-term goals. These can include
interruptions, most emails, Slack reach-outs, and meetings that do not add

83

substantial value. These are the tasks that promote context switching —
which is the death of efficiency, as we have to rebuild context when we
return to the task at hand. We’ll speak to techniques to manage these kinds
of tasks, including delegation, focus time, and saying no.

4.​ Neither Urgent nor Important – Delete
These tasks are time-wasters and should be minimized or eliminated.
Sometimes, these are easy to identify (checking social media), but usually
they are tasks that are misclassified into quadrant three: tasks that we
consider more important than they actually are. Careful scrutiny of tasks in
quadrant three can save you time — move them into quadrant four and drop
them.

A principal's ability to achieve long term impact will be a function of their ability to
prioritize quadrant two over quadrants three and four, while curating quadrant
one. Quadrant two is where we spend time thinking strategically, where we can
take the time to evaluate, consider, and innovate. Because this work is rarely
urgent and the value more speculative (especially in the short term), it’s easy to
procrastinate quadrant two tasks in favor of less-important but higher-urgency
issues. You might choose to help a junior with a minor MR or read a paper where
you were added as the third or fourth reviewer — tasks where you can quickly add
value — making it easy to justify putting off longer-term strategic work to
tomorrow.

One of your biggest advantages as a principal engineer is that, unlike managers,
you aren’t constantly pulled into the daily demands of running an organization.
That gives you space to focus on the strategic, long-term work in quadrant two —
if you don’t make the time for it, chances are no one in the organization will.

We’ll walk through the Eisenhower matrix quadrant by quadrant, considering
different techniques and practical methods to help you protect your time, prioritize
where you spend it, and get the most out of it.

Exercise

Take a moment to write down your current Eisenhower matrix. What tasks
are on your plate right now? What tasks have you wanted to work on but
struggled to prioritize?

84

Quadrant 1

Getting the important things done

“You deliver critical business value by solving complex problems that span teams and
organizations. You partner with fellow leaders to identify problems and align on their
nature.” Principal engineer summary

“You are trusted to exercise your judgment—you take the initiative, and you are skilled at
communicating why, what, and how to your leadership.” Principal engineer summary

“You cultivate collaboration, listening to and integrating feedback across all levels.”
Leadership facet

— Zillow Leveling Guide

The work that falls into quadrant one is the critical stuff. Work in this box will
crowd out other work, especially the long-term work in quadrant two. First, you
must keep this box as lean as possible, ruthlessly prioritizing only those tasks that
are both truly important (will create true impact rather than be perceived as
important) as well as actually urgent (the value is truly time-sensitive). Second,
you must be efficient when you set about actually doing the work.

Technique: Discuss priority with stakeholders
Your many stakeholders will attach different priorities — different senses of
urgency and importance — to different tasks. The more senior your role and the
greater your influence, the more stakeholders you’ll have to manage. You can’t
please everyone, and you shouldn’t try to. Rather, you should work closely with
your manager to develop your own priorities and share these priorities with your
stakeholders.

One method for doing this is periodically discussing your Eisenhower matrix with
your manager. Share it with your peers and stakeholders, too, for feedback. Their
perspectives will help inform (and check) your classifications. Stakeholders can
be surprisingly reasonable when they see their tasks compared and contrasted
with others on your plate.

85

In particular, you should seek their advice on which tasks in quadrant one can be
moved right to quadrant two or down to quadrant three.

To determine whether a task can be shifted right, ask questions such as:

●​ What happens if this work is delayed a week? A month? A quarter?

●​ Will irreversible (or hard to reverse) decisions be made if you don’t act
ASAP?

●​ Can the work be rearranged or re-thought to disentangle the urgent from
the non-urgent?

●​ What’s the opportunity cost of delaying this work compared to other work in
the matrix?

If a task doesn’t turn out to be as urgent as originally communicated (or as urgent
as you originally assumed), move it to quadrant two.

To determine whether a task can be
shifted down, ask questions such as:

●​ What’s the risk of letting someone
else do the work?

●​ Is the task expensive to do myself but
easy for me to audit someone else’s work?

●​ Does this work present a growth
opportunity for a junior? Is there a junior
well equipped and eager to do this work?

If a task can be done well enough by
someone else, move it to quadrant three.
By considering these questions
hand-in-hand with your manager (or with

peers in the organization such as SDMs or other key engineers), you may be able
to quickly agree that certain tasks should be moved off your plate. For example,
you may move a task from quadrant one to quadrant three, doing the work
necessary for an effective hand-off. We’ll discuss delegation in more detail below.

86

 Antipattern

Few things feel as rewarding as being the
superhero who dives in to “save the day”
— no one else could do the work correctly
and on time, only you! But this impact is
one-off and fleeting. To create enduring,
scalable impact, you must remove the need
for heroism in the first place. It’s better to
be the fire marshal preventing fires through
inspections than the fire fighter charging
into the fire after the fact — even if the
latter gets the glory. Being the marshal
requires us to reflect on quadrant one: why
are these essential and why can’t they be
delegated or handled later?

Remember not to conflate visibility with importance. Seek to delegate low-impact
but highly-visible work to a more junior engineer. As a principal, you naturally have
more opportunities for visibility, and delegating these tasks allows others to gain
exposure while freeing you to focus on other work.

To determine whether a task can move from quadrant one to four, there’s only
one question to ask:

●​ What happens if we simply don’t do this?

It’s common to overvalue a task, especially when the output is for someone else.
By talking to the supposed beneficiary up front, we might find that they are more
than willing to drop the request in favor of your other priorities. For example, you
may have agreed several months prior to attend a weekly ops review, but the
value of your frequent participation may have dwindled over time, and you might
decide to attend less frequently.

Keep in mind that it’s easy for others to assume you have additional capacity when
you simply don’t. Review this matrix with your manager and stakeholders,
frequently.

Exercise

Bring your Eisenhower Matrix to your next 1:1 with your manager. Talk
through it. How did this conversation go? Were you able to have a more
productive conversation around how to prioritize your time? If not, why not?

Technique: Planned focus time

Once we’ve whittled down to the truly important tasks, we still have to actually do
the work. As a principal, you must dive deep, think carefully, weigh details,
consider long-term implications, and creatively solve problems — all of which
require concentration. Your time is limited, and full of competing demands. If you
only try to squeeze strategic work in between other commitments, you’ll struggle
to do it well. Instead, proactively plan for dedicated focus time.

Granted, this is easier said than done. Here are a few strategies to help protect
that time:

87

●​ Create calendar blocks. Put this time on your calendar just like any other
meeting. This helps signal to others that you are unavailable during those
times. It’s on you to try to treat these as non-negotiable commitments to
yourself.

●​ Establish a recurring rhythm. Calendar blocks can be more effective when
they follow a consistent pattern. For example, you might reserve the first
two hours of each morning, or designate one or two days a week for deep
focus. A predictable rhythm makes it easier for others to learn when not to
interrupt you, reducing the likelihood of ad hoc meeting requests during
those windows. It also helps you build a habit. When focus time becomes
routine, it’s easier to get into a deep work mindset quickly.

●​ Set expectations on Slack. Set your status to ‘Slow to respond’ or ‘Focus
time’ to set expectations with others. Then, mute Slack notifications. This
will help you focus and put your mind at ease by removing the obligation to
respond quickly, and removing distractions.

Actually focus: Once you’ve claimed focus time, you better make the most of it!
Do whatever you need to do to focus: minimize distractions and set clear goals.

For some individuals, this is sufficient: given uninterrupted time, they’ll dive right in
and get the work done. Not all of us find this easy to do, however. There are many
frameworks and methodologies to help you make the most of your focus time.
Whether one will work for you is a matter of personal preference.

Here are two methods you can explore if you need more help structuring your
focus time:

●​ Flowtime technique — A time management approach designed to
accommodate tasks that are harder to estimate and often depend on
creativity (such as writing, coding, etc).

●​ Time blocking / Time boxing — A method of creating deadlines for yourself
by visually blocking out time (on a calendar or equivalent).

88

Technique: Manage your meetings
We often default to treating meetings as ‘must-do’ tasks, letting them fill up
quadrant one. Protect your time by avoiding unnecessary meetings and making
the necessary ones efficient and effective. First let’s look at methods for getting
the most out of meetings you control.

When meetings are essential, it’s your responsibility to ensure they are productive
and meaningful. Here are key strategies for maximizing meeting effectiveness:

●​ Invite only the necessary people. Large meetings tend to waste time and
create unnecessary noise. Limit attendees to only those who need to be
there to either contribute to or act on the outcomes.

●​ Start with a clear agenda. Ensure that every meeting has a defined purpose
and agenda shared in advance. When participants know the objectives,
they come prepared, leading to more efficient discussions. A clear agenda
helps everyone stay on track and eliminates unnecessary conversations.

●​ Set time limits and stick to them. Time-box your meetings based on the
agenda. Set the meeting duration based on the actual discussion time
needed. Start on time and end promptly, respecting everyone’s schedule.

●​ Facilitate focused discussions. Keep discussions on point, and don't be
afraid to steer the conversation back to the agenda if it derails. That said,
remain open to improvisation when valuable ideas arise—balance
preparation with flexibility.

●​ Summarize and assign action items. At the end of the meeting, summarize
key takeaways and ensure clear action items with owners and deadlines.
This helps prevent the need for follow-up meetings and holds everyone
accountable for moving forward.

In general, the smaller the invitee list on an invite, the more important a role you’ll
play in driving value at the meeting. But paradoxically, it’s easy to fall prey to the
fear of missing out when the invitee list is large: if you don’t go, what will you
miss? Will key information be shared that you won’t be privy to? Will some
statement be made that only you can respond to or correct?

89

​
Don’t fall into the trap of attending meetings out of FOMO. Insist that organizers
provide post-meeting summaries (whether manual or AI-generated), and that
documents be shared in advance with potential decisions outlined in the agenda

so you have a chance to assess the value
of your attendance beforehand. Don’t go
just for the sake of including your face on
the Zoom mosaic.

What about meetings you don’t control?
Carefully evaluate requests for your time
and learn to avoid saying yes to
unnecessary meetings. Avoiding
unnecessary meetings isn’t just about
saving time by canceling — it’s about
choosing the most effective way to
communicate and understand your
audience. Be flexible in your approach,

meet people where they are, and choose the method that best fits the situation
and the habits of your team. Reserve meetings for when high-bandwidth verbal
communication is most valuable, such as working through disagreements in
approach, discussing a nuanced issue, or building a social connection.

Consider these alternatives to a meeting:

●​ Impromptu huddle: Call for a brief, no-video chat when quick alignment is
needed. These huddles keep interactions focused and get right to the point,
saving time.

●​ Slack conversation: Use Slack for quick back-and-forth or to gather input
asynchronously without disrupting schedules, keeping conversations
efficient and organized.

●​ Written document: Collaborate on a shared document to gather feedback
or input, providing a clear, asynchronous way to engage with complex
topics.

●​ Email: Use email for updates, requests for feedback, or progress reports
that don’t require immediate responses, ensuring clarity without interrupting
workflow.

90

 Antipattern

One of the most common mistakes in
meeting culture is scheduling a meeting
just to discuss another meeting. This
happens when you haven't prepared
enough or lack clarity on the objectives.
Instead of having meaningful discussions,
time is wasted rehashing the agenda,
defining roles, or planning yet another
follow-up. This "meeting for the meeting"
creates unnecessary friction, delays
decisions, and ultimately causes meeting
fatigue.

Quadrant 2

Working on the long-term things

“The feedback cycles are longer than before, stretching across quarters and into years.”
Strategy facet

“You are expected to identify, define, socialize, and break down novel problems in your
organizational domain.” Strategy facet

— Zillow Leveling Guide

Principal engineers must find time to consider the long-term. We are best
positioned to explore a new architectural direction, realign work across teams and
organizations to better account for Conway’s Law, drive engineering excellence
initiatives, or investigate a new technology. Yet, these activities are easy for us to
deprioritize in the face of more urgent tasks.

How do we find the time to work on these and how do we select the right ones to
work on?

The kinds of tasks that tend to fall into quadrant two aren’t urgent and, because
they often require much thought and discussion, you can take your time to figure
out which ones are really worth investing in.

Towards that end, we suggest thinking about the tasks in this quadrant as “irons in
the fire.” Many ideas might be worth investing further in: Use the following
techniques to filter through and find the ones that you are ready to act upon.

Technique: Let time reveal what’s important
Time offers perspective. What appears to be absolutely necessary today often
turns out to be nice-to-have or, even, completely off the mark within months. Our
own career experiences as principal engineers help us peer past this veil, but it’s
worth emphasizing that, often, the best course of action is to watch and wait.

91

Delaying an action doesn’t mean doing nothing. We use this time to collect
information and let ideas evolve. Keep a private running document to gather ideas,
links, notes, and insights as they come. Let the idea take shape gradually.
Leverage casual and low-pressure conversations outside of structured meetings
and looming deadlines to test the ideas with others.

By taking time to explore an idea patiently through casual conversations, you not
only create the opportunity to convince yourself that an idea is worth pursuing,
you have the opportunity to convince others as well. By the time you’re ready to
write a doc or pitch the idea more formally, your idea will feel familiar to your
audience. You’ll meet agreement, not resistance.

Technique: Write it down
A more time-intensive approach to exploring and collecting information on an idea
is to write it down as a request for comment, or RFC. The act of writing will help
you formalize your thoughts and think through the problem. A well-written doc
walks others through your reasoning and thought process. If people respond —
asking questions, sharing feedback, or building on it — that’s a signal that this is
worth pursuing further.

This approach requires you to adopt a mindset of genuine curiosity: seeking
feedback rather than pushing for change. Let the document drive conversations.
Let it develop over time. Let others become co-authors or contributors. Let the
document become a vehicle for sharing ownership — after all, when others feel
shared ownership of an idea, they’re more likely to champion it..

Additional benefits to writing down your thoughts

1.​ The document keeps working when you’re away from it. You can be stuck
in a meeting, or busy driving a quadrant one task to completion, while
others are reading your document and recognizing the patterns you've
described. Someone who finds your document compelling can share it with
someone else without any distortion — unlike verbal conversations which
can lose clarity as they pass from one person to the next.

2.​ The document is a place to recontextualize and re-energize yourself. For
many of us, this kind of long-term problem solving — ruminating on difficult,

92

ambiguous problems — is our favorite kind of work. It energizes us,and
re-energizes us when we get to return to it after our day-to-day routines,
meetings, and immediate deliverables. A living document helps you pick up
this work as time allows, quickly rebuilding context instead of restarting
from scratch. Note that ‘document’ here need not be a literal Google
document — it could be a whiteboard in your office, a sketch in Excalidraw,
or something equivalent that works well for you.

Technique: A bi-modal approach to decision making
There are often two points in time when it's ideal to make a decision: as early as
possible or as late as possible. Acting early promotes agility and speed — qualities
that can fade as organizations grow more complex or risk-averse — and primes
the business to nimbly respond to changing information and market conditions. On
the other hand, delaying a decision allows for more time to gather information,
which leads to more informed decision-making.

Delaying a decision doesn’t imply passivity. Rather, it encourages using
techniques like pilots, MVPs, and incremental experimentation to actively gather
information. Each of these investigative tasks can be treated as quadrant one
tasks, prioritized ahead of the final decisioning task in quadrant two. Said another
way, one can decompose quadrant two work into a series of more urgent tasks
that will reduce uncertainty without delaying progress inordinately.

Exercise

Is there a quadrant two task you’ve been meaning to tackle, but haven’t
made real progress on yet? How might you begin to gather more
information, collect your thoughts, and share this idea with others?

Quadrant 3

Shedding the unimportant things

93

“Impact is paramount, and you must scale.” Strategy facet

“When you identify workstreams in large projects, you guide juniors to effective solutions
and inspect their estimates.” Leadership facet

— Zillow Leveling Guide

Tasks in quadrant three will fall into two buckets: the less-than-important tasks
that you must do for reasons beyond your control, and those less-than-important
tasks that you’ve brought upon yourself.

You have little control over the former, short of what your management chain can
do to pull things off your plate. We all have the sorts of tasks that matter to the
business and, in aggregate, are important — bookkeeping, large meetings, and
training — but limited immediate value to us. You just have to get through them.

The latter kind is more interesting — and more solvable. These tasks often come
from situations that could have been prevented: unclear ownership, architectural
debt, overloaded systems, or overcommitments. Perhaps the juniors in your
organization were ill-equipped to pick up slack, or perhaps you simply tried to fix
too many things and took on too much work. Diagnosing these issues requires
context, judgment, and self-reflection — which fall to you as the principal. We
have three techniques to help you succeed.

Technique: Delegation
Tasks in quadrant three might be an opportunity to grow others in your
organization. The deeper the technical depth and leadership in your organization,
the more often you can hand off a task in quadrant three to someone else —
freeing you up to focus on quadrants one and two. And the more often you
delegate a task in this quadrant, the more effectively you build organizational
depth and capability.

Successful delegation is not the process of reassigning work from yourself to
others. While you can go to your manager and ask for tasks to be handed off —
and sometimes this might be necessary — it’s not ideal. You’re likely to suffer
pushback from others (juniors, the SDMs they report to, etc.) and resentment is
likely to build. The engineer who gets the work handed to them is probably

94

unsympathetic to a story like, “Well, I have a lot to do” — so do they! The art of
delegation requires some prep work to be successful.

If you’ve built great relationships with developers across the org, you should have
a good sense of who will benefit from what kinds of work. Who is seeking a
stretch project that aligns well with this task? Who simply enjoys this kind of work?
Who has ideas around automating away this kind of task? And so on.

Leverage your relationships to float the idea of a hand-off to the individual. Get
them interested, even excited. The most successful acts of delegation are never
perceived to be delegation at all: the individual asks to do the work rather than
being told.

At minimum, coming to management (whether peer SDMs or your manager) with a
suggestion rather than a request will improve your odds of delegating. If you can
suggest who is better positioned to pick up the work — and why — you’re much
more likely to get the work off your plate.

The follow-through matters as well, of course. Refer back to part one to refresh
yourself on how to guide, how to inspect, and how and when to let others fail.

Scenario
As a principal engineer working closely with the Data Platform team, you're
leading a major infrastructure upgrade to improve data pipelines. However, your
calendar is packed with high-priority tasks, and it’s becoming clear that you need
to delegate some work. One task involves refining a set of monitoring scripts for
the data pipelines — important, but something that doesn’t demand your specific
skills.

You decide to leverage your relationships across the organization. You know that
Alex, a senior engineer on one of the data teams, has been looking for more
opportunities to take on stretch assignments. They’ve shown an interest in
monitoring systems and have even mentioned wanting to dive deeper into
automation work. Recognizing this, you decide this would be a great task to
delegate to them.

You approach Alex and have a conversation about the project. You ask them for
their thoughts on improving the current monitoring setup and whether they see
any opportunities for automation. As the conversation develops, Alex begins

95

sharing some ideas they’ve had on streamlining the monitoring process. You guide
their thinking with questions, helping them see the larger implications of the task
and how their work could impact the entire pipeline.

By the end of the discussion, Alex is excited about the challenge and asks if they
can take ownership of the task. You agree, handing over this work without making
it feel like an assignment. You then take the additional step of mentioning this to
their manager, making them aware that this is an opportunity for Alex’s growth and
explaining how their strengths align with the task. The manager appreciates the
thoughtfulness and supports Alex’s involvement.

Over the next few days, you check in periodically to inspect Alex’s progress,
offering feedback and guidance when necessary. When Alex hits a roadblock, you
encourage them to think through the problem and propose solutions before
jumping in to help. This gives Alex the space to learn and grow, while ensuring the
project stays on track.

The result is twofold: Alex successfully completes the task, improving the
monitoring system while gaining new skills and confidence. Meanwhile, you’ve
freed yourself to focus on more critical strategic work, all while strengthening
relationships and building depth within the org.

Technique: Reduce planning commitment
Part of delegation is stepping back from routine ceremonies and planning work
that senior engineers are capable of doing on their own. If a team is healthy, a
principal engineer’s presence shouldn’t be needed for part planning, task
estimation, stand-ups, and backlog grooming. Unless your involvement will clearly
unlock progress — because of unique expertise or a high-risk situation — you
shouldn’t sit on the critical path for defining and divvying up small units of work.

Show up when it matters. Maybe the team is junior and needs guidance. Maybe a
project is off track. Maybe you’re checking in to nurture relationships and stay
connected to the organization. These are all valid reasons. Just be intentional with
your time and don’t let ceremony control your calendar.

96

Technique: Identify systemic causes
Tasks in quadrant three might be indicative of systemic issues. Ops tasks piling
up? Might be a sign of systemic architectural or cultural problems. Small product
changes require last-minute scrambling (design, configuration, etc.)? Might be a
sign of architectural limitations or a failure to align with stakeholders. Requests to
explain tough problems — infrastructure costs, RCA trends, ops dashboards, etc.
— piling up and randomizing you? Might be a sign of a lack of engineering
expertise across your organization. And so on.

Identifying and diagnosing these patterns may not provide immediate value.
You’re identifying new tasks for quadrant two that can generate lasting long-term
value. This is exactly the sort of work that principal engineers are equipped to do
— identify systemic issues from trends and articulate the problem to leadership.
Use the Eisenhower matrix to drive the discussion with your manager when you’re
trying to prioritize quadrant two work: investments there will drive down time
spent in quadrant three over the long term.

Technique: Choose your battles
Principal engineers have the experience to identify problems better than the
juniors around them. On one hand, this is good, and it’s key to the value you bring
to the organization. Yet, from your elevated vantage point you are likely to see
more problems than ever before. So many problems. Too many problems.

As you progress in your career, it becomes increasingly important to recognize
that you can't do everything. The key to managing your workload effectively is to
focus on the most high-leverage areas. This means ignoring legitimate problems
— or, at least, treating these problems with a lesser sense of urgency than your
first instinct might suggest.

Ideally, we gate this kind of work before it ever ends up on our Eisenhower Matrix:
we saw the problem, decided the problem wasn’t worth solving (or the time wasn’t
ripe), and never took on the work of solving it. Yet, in practice, some will inevitably
slip through. It’s healthy, therefore, to re-ask the question, “What happens if we
simply don’t do this?”

97

If the answer is “this problem can wait,” avoid simply shifting it to quadrant two.
You already decided it was unimportant, so don’t categorize its importance just to
keep it on the matrix. Move it to quadrant four.

Exercise

Review your quadrant three tasks. Which ones might you be able to delegate? Of
the remainder, how might you reduce the number/frequency of these in the
future?

Quadrant 4

Discarding the rest

“You demonstrate effective verbal and written skills, communicating with everyone from the
junior-most engineer to the senior leaders of your organization.” Communication facet

— Zillow Leveling Guide

Too often, the Eisenhower matrix is presented in a way that makes quadrant four
appear to be the easy bit: if a task lands here, delete it! Move on with your life! If it
doesn’t bring you joy, so to speak, toss it in the bin!

In practice, however, a principal engineer rarely has this luxury. Each task on our
plate has stakeholders, and those stakeholders want the work done for some
reason. Even if they agree it's less important than the other stuff on your plate,
they won’t be keen to see it dropped, either.

In truth, the best way to handle these kinds of tasks is to keep them off your
Eisenhower matrix in the first place. When a task lands in this quadrant, reflect on
how it got there, and strategize with your manager on how to minimize such tasks
in the future.

98

We’ll offer up a couple techniques to keep these off your plate in the first place.
You must learn how to say no to requests. This is easier said than done. Different
stakeholders may require different ways to be told no. Here are a few suggestions.

Technique: Saying no to your managerial chain
A simple no to a request from your manager or skip isn’t going to cut it — they’ll
raise an eyebrow and repeat the request. Yet, our managers don’t expect us to be
heroes. They expect us to discuss priorities. We have a finite amount of capacity,
so a new request requires something else to be deprioritized.

Don’t make the mistake of asking your manager an open-ended question like, “So
what should I drop?” Exercise your judgment instead (perhaps leveraging a model
like the Eisenhower matrix) to proactively suggest which work should be
deprioritized. This helps your manager make a quick decision around whether the
new work is worth the trade-off, and it helps you better influence these kinds of
top-down requests.

Scenario
You’re the principal engineer overseeing Zillow.com’s ongoing effort to improve
page load performance — a critical initiative aimed at enhancing user experience
and SEO rankings. As your team is deep in this project, your manager approaches
you with a new request: the marketing team wants to add a complex, interactive
map feature to the homepage to highlight trending neighborhoods, believing it will
boost user engagement.

While the map feature aligns with business goals, the amount of design and
development required would pull key resources from the performance
improvements, threatening your team’s current focus. Instead of simply saying
"no," you use the Eisenhower matrix to frame the conversation.

In your next 1:1, you acknowledge the potential impact of the map feature but
explain that it falls into the "important but not urgent" category compared to the
performance initiative, which is both urgent and important. You note that
improving load performance has a more immediate and broad impact on users
across the entire site, whereas the interactive map feature could be impactful but
not at the same scale or urgency.

99

Rather than just presenting the problem, you suggest a solution based on priority:
the map feature could be delivered in phases. In the first phase, a simplified
version showing trending homes as a clickable list — using existing APIs and
designs. This allows your team to maintain focus on the performance work with
minimal disruption. Once the performance project is complete, your team can
revisit the trending homes feature and implement the more complex map and
interactive elements in future iterations.

Your manager appreciates the structured approach and your ability to prioritize
effectively. By showing how the map feature fits into a broader strategic plan and
balancing it with urgent tasks, you address the request without compromising the
performance work. The phased solution allows the marketing team to get an early
version of the home trends feature while your team continues with the
high-priority performance improvements.

Technique: Saying no to a stakeholder
Unlike your manager, a stakeholder (PM, TPM, engineer from another
organization, etc.) isn’t necessarily interested in the holistic view of where you
spend your time — given the option to deprioritize someone else’s task in favor of
their own, they’ll tend to take it every time.

The trick here is to avoid saying yes when the request is first made. Promise to get
back to the requester with a decision in a timely fashion. Then, take the time to
evaluate this request against your other tasks. Engage your manager as
necessary. If the answer is no, politely decline (perhaps cc’ing your manager over
email or including your manager in a Slack message, if necessary). Or, work with
your manager to delegate the requested task to someone else.

If the request is for your participation in a meeting, ask to see a clear agenda up
front. Will you add value or is the meeting creator simply trying to build a complete
list of possible stakeholders? Request documents up front for review and, if you
have nothing to add in a synchronous context, politely decline the meeting.
Encourage asynchronous alternatives where possible to ensure meetings stay
productive and relevant.

100

Technique: Saying no to a junior
As we grow more senior — and as we build better relationships with juniors —
requests for our mentorship and guidance will grow. These requests are very easy
to say no to, in the sense that a junior has little recourse to insist that you say yes.
Yet, it is for this very reason that we should avoid taking the path of least
resistance by turning these requests down just to preserve space for managerial
or stakeholder requests.

When we must say no to juniors, we don’t want to inadvertently discourage them
from making such requests in the future, whether to us or other seniors. Thank the
junior for reaching out, clarify why they reached out, and what they hoped to get
out of the request, and offer them asynchronous guidance as best you can.
Methods that might be applicable, depending on the situation:

●​ Suggest someone else. This could be another principal engineer, a relevant
manager, or another junior engineer who is well-equipped to handle the
request at hand. Ideally, you’ll pave the path by reaching out on their behalf;
perhaps in a shared email chain or Slack thread

●​ Suggest resources. As principals, we often have a bookshelf (real or
figurative) of books, articles, and talks that we’ve found helpful in our
career. Point the junior to relevant resources that they can engage with
independently.

●​ Promise a backstop. You can increase psychological safety by promising to
make the time in the future if other methods don’t pan out. They can
investigate a problem on their own, knowing that if they don’t make
progress (or if other individuals prove less than useful), you’ll be there to
step in and help them out. Many such requests will simply go away after a
week or two.

Exercise

Reflect on your quadrant four tasks. How might you go about declining such tasks
in the future? Reflect on your calendar. Which meetings might be classified as
quadrant four tasks? Which ones should you politely decline?

101

Part V

Building technical strategy

Technical strategy outlines how technology will be used to meet long-term
business goals. It involves understanding business priorities, reducing ambiguity,
leveraging proven technologies, and balancing short-term deliverables with
long-term vision to ensure that the technical strategy is both resilient and
adaptable.

Next, we’ll discuss the fundamentals of building a good technical strategy. We’ll
explore how to align our technical efforts with business priorities, balance
short-term and long-term goals, and leverage industry best practices. By the end
of this part, you’ll be better able to develop and articulate a technical strategy that
not only addresses immediate needs but also paves the way for sustainable,
long-term success.

We’ll also discuss techniques such as steel threads, strangler fig re-architecture,
A/B testing, and MVPs to ensure that our strategy is not just a theoretical
construct but a practical, actionable plan. You’ll learn about transforming
high-level strategic concepts into concrete actions that drive business value. By
understanding and applying the principles of good strategy, we can navigate the
complexities of our technical landscape and achieve our long-term vision.

Section 1

Fundamentals of good strategy

In software development, a robust technical strategy helps teams navigate the
complexities of modern business challenges. According to Richard Rumelt in his
seminal work Good Strategy, Bad Strategy, good strategy is defined as “a
coherent set of analyses, concepts, policies, arguments, and actions that respond
to a high-stakes challenge.” It is a plan for action backed by a cogent argument —
an effective mixture of thought and implementation with a basic underlying

102

structure. Rumelt calls this the “kernel,” the bare bones center of a strategy — the
“hard nut at the core of the concept.”3

A good strategy contains three essential elements:

Diagnosis: The diagnosis explains the nature of the challenge, identifying
which aspects of the situation are critical and the obstacles to be overcome.
It answers the critical question, “What’s going on here?” Rumelt asserts that
most deep strategic changes are brought about by a change in diagnosis —
a shift in how the organization perceives its situation. In our context, this
means understanding the technical and business challenges we face and
recognizing the critical factors that will influence our success.

Guiding policy: This is the overall approach for dealing with the challenge: a
method to cope with or overcome the obstacles identified in the diagnosis.
A good guiding policy defines a method of grappling with the situation and
rules out a vast array of possible actions. Without a guiding policy, an
organization would lack the principle to coordinate or focus its actions. For
us, this involves setting a clear direction for our technical strategy that
aligns with business priorities and long-term goals.

Coherent actions: These are the specific steps required to carry out the
guiding policy. The actions adopted should be consistent and coordinated.
This means that our technical initiatives, from reducing technical debt to
implementing new features, must be aligned and executed in a way that
supports our overall strategy.

According to Rumelt, most strategies are "bad." Not because the strategy is wrong
but because it is not a strategy at all. Often, what passes for strategy is merely a
goal or, at best, a tactic. For instance, "reduce customer churn by 15%" is not a
strategy. "Reduce customer churn by 15%" is a goal without context or a plan. It
lacks the necessary diagnosis of the problem, a guiding policy to address the
challenge, and coherent actions to achieve the desired outcome.

​

3 Richard Rumelt, Good Strategy, Bad Strategy: The Difference and Why It Matters (Crown
Business, 2011)

103

Section 2

Diagnosis

“You are an expert in your business domain, shaping technical investments to unlock
long-term business capabilities.” Strategy facet

“You look outside Zillow—you know most problems are not new. You learn from the larger
industry to improve and innovate by examining case studies, exploring new technologies,
and importing best practices.” Learning facet

— Zillow Leveling Guide

Crafting an accurate diagnosis is essential. Fail to understand the problem
correctly, and the strategy will probably result in wasted time and effort.

You may realize that you need to begin diagnosis for any number of reasons.
Some will be obvious — a major product feature needs to be launched — others,
less so — an observed trend across RCAs, a persistent sense that your
organization is struggling to deliver features as fast as it ought to be, exposure to
a new technical pattern suggesting significant gains in efficiency or adaptability,
etc. Regardless of the initial trigger, remember that diagnosis is not the act of
identifying solutions to a problem, it’s the act of defining the problem itself.

To effectively diagnose a problem, you must have an accurate understanding of
both the engineering and the business context. To understand the goals,
constraints, and capabilities of only one but not the other is to invite misdiagnosis.

Two critical techniques we will focus on are understanding business priorities
and understanding engineering priorities. These techniques are essential for the
diagnosis phase of our strategy. Understanding business priorities involves
understanding both the long-term vision and immediate goals of the business, and
ensuring that our technical strategy supports these objectives. Conversely,
understanding engineering priorities means identifying the technical challenges,
such as technical debt, scalability, and maintainability, that must be addressed to
ensure long-term success of the business.

For a principal engineer, the engineering priorities tend to be easier ones to build
and maintain context on. Some of these are straightforward technical concerns,
such as technical debt, long delivery cycles, or the strengths or weaknesses of a

104

particular architecture. (We discuss this step in more detail in Understanding
engineering priorities.)

Understanding the business priorities
tends to require more work. You must
make an effort to understand where the
business is going, how it maps to your
organization, and how your technical
choices will either support or conflict with
those goals. In the end, this software
exists for one reason: to power the
business.

By effectively identifying and deeply
understanding both business and
engineering priorities, we can create a

guiding policy that balances these needs, and develop coherent actions that drive
our strategy forward.

The final step in establishing a diagnosis is to accurately weigh the many different
problems you face and identify the critical ones — ideally, rooting several
problems into a handful of more fundamental ones. (I.e., are the high operational
load, frequent deadline misses, and low morale tied to an architectural pattern? A
cultural problem? A poor division of responsibilities? Something else?) Prioritize
the most important.

Technique: Understanding business priorities
Understanding business priorities is really an act of inspection, discussion and
understanding, which requires partnership with your customers, product partners
and other stakeholders. Your primary goal in this process is to understand why.
As a principal engineer, you should proactively seek to understand:

●​ Key performance indicators (KPIs): What are the critical metrics the
business is focused on driving? How will the success of new features or
initiatives be measured?

●​ Motivating factors: Beyond the feature request itself, what is the underlying
business problem or opportunity it aims to address? Understanding the why

105

 Antipattern

Don’t accept a problem definition someone
else has written at face value. Chances are,
they haven’t considered the same complete
context that you have — the full sweep of
technical and business constraints and
opportunities. Always probe to understand
the problem better. We are at our most
effective when, by shifting the parameters
of the problem, we resolve it with minimal
— or even no — effort.

behind requests provides crucial context. Sometimes, understanding the
why will lead you to completely different solutions from those that were
initially requested or suggested.

●​ Definition of success: How does
the business define a successful outcome
for this project or initiative? This goes
beyond technical completion to
encompass the desired business impact.
Taking this a step further — what would
failure look like? Understanding where to
draw the line can help identify a need to
stop and reassess, or it may help identify
key moments in the product development
process which could be iteratively
delivered to customers.

●​ Customer needs and pain points: Engage with product partners (and even
customers) directly to understand their needs, preferences, and challenges.
This direct insight is invaluable for aligning technical solutions with actual
user demands. The more you do this, the more you will start to see
similarities and patterns in what is being requested, helping you identify and
design generalized solutions that may be able to satisfy many customers at
once.Recently, new tools have emerged which are particularly powerful in
understanding business context and helping you refine your own thinking;
LLMs. LLMs are perfect tools for streamlining this technique of
understanding business priorities. You have a powerful summarizer to pull
key points from internal documents, you have as much time as you need to
ask deeper questions, and you have a powerful researcher to assess your
competition. LLMs are also excellent thought partners, helping you have a
natural conversation to improve the depth of your understanding.

Scenario
A new key product initiative is taking shape. Leadership is referring to this
initiative as the Sellers and Buyers In Zillow (SBIZ) program. Your senior product
partner has presented an initial narrative that shows a new feature concept that
will support virtual home tours. They have defined a high-level experience which
allows a buyer to log in to Zillow and go on a virtual tour of a home. You realize
this would be great to help with buyer schedules — you can tour homes whenever

106

 Antipattern

In the pursuit of a robust technical strategy,
it’s crucial to avoid allowing business
priorities to become the sole input into
planning and strategy. While understanding
and aligning with business goals is
essential, a balanced approach that also
considers engineering priorities is
necessary for long-term success. A bad
technical strategy, after all, will impede
future business priorities.

it suits you, no need to coordinate access! Your team is being asked to help
estimate what would be required to build this feature into the Zillow app, and
whether they can deliver the first feature called “Connect with Virtual Agent” by
the end of the quarter.

You reflect on how to respond to this request, and come up with a few options:

1.​ Provide low-confidence estimates. You already have a system which can
create AI-based video-like renditions of a home based on the listing photos.
It shouldn’t be too hard to put this behind a ‘Virtual tour’ button on the
website. You could give a reasonable ballpark on how big this project would
likely be and start thinking about pulling this into quarterly planning.

2.​ Ask for a product requirements document (PRD). You don’t like giving
estimates without more information, and so you ask your product partner to
help build a more thorough PRD which will ensure your estimates cover all
expected requirements for this feature launch. You want to make sure you
understand the scope — such as which web pages this should appear on,
and how many photos we would require before we’d be able to create an
AI-generation pipeline.

3.​ Ask why. The first thing you do is
ask your product partner for more details
on what they are trying to achieve. You
want to understand what goals the
business has and what critical business
metrics we are looking to move the needle
on. You also want to understand if this is a
concept we have conviction on, or it’s a
narrow experiment to test buyer
engagement, as that will affect the level of
operational readiness you put into the
feature.

Thankfully, you chose option three,
because after that first discussion with

your PM partner, you realize you had made some really incorrect assumptions
about what was intended here, and the UX mocks you saw really didn’t line up
with what you now understand the vision to be. Your product partners are looking
at how to make it easier for buyers to tour homes on more flexible schedules, but

107

 Antipattern

Don’t assume that your product
partners have thought through
everything. Ask questions, seek to
understand and clarify both the goals
and the approaches being suggested.
Challenge assumptions and attempt to
articulate your understanding of the
problem domain to ensure you
understand why we are looking to
build out a particular strategy.

the goal was really to have buyers connect with a real estate agent who would
physically tour the home and work remotely with a buyer over a video interface to
explore the property on their behalf.

Technique: Understanding engineering priorities
Business priorities inform and shape our strategy, but they need to be aligned with
the technology landscape to be effective. Understanding and articulating
engineering priorities helps us identify the technical challenges and opportunities
that impact our ability to achieve business goals. This involves assessing factors
like learning new technologies, managing technical debt, addressing system
complexity, evaluating feasibility, leveraging existing solutions, and identifying
related problems that could be solved by incorporating them into our strategy.

Engineering priorities are the foundation for executing business strategies. For
example, adopting new technologies can keep us competitive and improve system
performance. On the other hand, technical debt and system complexity can slow
us down and need to be managed to avoid inefficiencies. Evaluating the feasibility
of solutions ensures we pursue realistic goals.

Leveraging existing solutions where possible and innovating when necessary
helps us balance proven technologies with new advancements. This approach
ensures our technical strategy is sustainable and forward-looking. By
understanding these priorities, we can align our technical capabilities with
business objectives, making our strategy both realistic and ambitious.

In short, understanding engineering priorities allows us to accurately assess the
technical landscape and create a strategy that aligns with business goals while
being grounded in technical reality. This ensures our initiatives are feasible,
sustainable, and capable of driving long-term success.

Technique: Learning from the industry
Many of the problems faced in software development are not new. Nor are they
unique to a single organization. The industry as a whole has encountered and
addressed similar challenges to those you will

108

encounter in your career, meaning a
wealth of knowledge and best practices is
available to draw from. By looking
externally, we can leverage proven
technologies, dependencies, and
frameworks that have been successfully
implemented elsewhere. This approach
not only helps in solving current issues
more efficiently, but also ensures that we
are aligning with industry standards and
innovations. Learning from industry case
studies and best practices allows us to

make informed strategic decisions, ultimately balancing the need for immediate
solutions with long-term technical capability and business value. Thoughtful use
of AI can make external research more efficient and focused — use it to support
evaluations and surface relevant trade-offs.

Scenario
Now that you have a better understanding of what the business is trying to
achieve with the virtual tours concept, you start to map out the technology
landscape. You realize that we could perhaps enhance the new Zillow Messaging
platform to include video calling as a capability, and you know there was a hack
week project that showed how this could be done relatively simply with the
existing architecture. You know that we need to account for buyers who are
already working with an agent as well as those who are just starting out, so you do
some research to understand how the agent lead pipeline works. Looking back at
the last major feature your team launched on the Zillow app, you recognize that it
took much longer than initial estimates — there were some architectural
challenges that made it difficult to align work across multiple engineering team
roadmaps, as well as some legacy code that has recently been causing crashes
related to memory exhaustion on certain devices. This will all need to be
considered as you give shape to your strategy.

After your initial technical diagnosis, you set yourself some next steps. First you’ll
meet with the app team leads to understand what challenges they are working
through. Then, you’ll do some online research to understand how competitors
might be approaching similar problem spaces — and what video conferencing
platforms might be leveraged to reduce the time-to-market and reduce the overall
workload in building out and operating such a platform.

109

 Antipattern

Don’t just assume that because it
worked elsewhere, it will work here. By
the same token, don’t fall into the trap
of ‘not invented here,’ where the exact
opposite problem can manifest —
ignoring all industry guidance because
it couldn’t possibly work for your
unique company.

https://en.wikipedia.org/wiki/Not_invented_here

Exercise

Thinking about your current project focus, reflect on whether and how you
approached a diagnosis of the key problems you are attempting to solve.
Did you deeply explore the business and engineering priorities? Was there
data you were able to collect from industry research to inform you further?
Was this an intentional phase of your planning and the development of your
solution approach? What opportunities to look outside your company for
inspiration or guidance did you take?

Section 3

Guiding policy

“Strategy is the act of substituting ambiguity for a set of options and making a reasoned
choice among those options.” Strategy facet

“You influence and shape team architecture, working closely with Principal Engineers and
other Seniors to design, adapt, and grow your architecture to respond to changing
business needs.” Architecture facet

“The feedback cycles are longer than before, stretching across quarters and into years—a
solution must not only deliver incremental value, but withstand the test of time via
resiliency, scale, and adaptability.” Strategy facet

— Zillow Leveling Guide

If accurately diagnosing the problem is the most critical part of authoring good
strategy, arguably the hardest part in the engineering context is defining good
guiding policy. As engineers, we tend to be good at figuring out what’s wrong —
especially when we understand that we should step back and consider the wider
socio-technical and business contexts. We’re also pretty good at coming up with
coherent actions: we’ve been proposing and actuating concrete work since the
start of our careers.

Let’s return to the definition we offered above:

110

A guiding policy is the overall approach for dealing with the challenge: a
method to cope with or overcome the obstacles identified in the diagnosis.
A good guiding policy defines a method of grappling with the situation and
rules out a vast array of possible actions.

This is trickier: you need to define a principled approach. There is no easy way to
generalize how to go about defining the correct or best approach — or what will
theoretically work or won’t. This, ultimately, rests on your shoulders. However, in
this book we can offer this: in software engineering, a guiding policy will tend to
boil down to defining an approach through one of three (or some combination of
the three) factors:

1.​ Technical architecture — Architecture enables certain possibilities and
constrains others. If we conceive of architecture not as a one concrete
deliverable (a coherent action) but as deliberately enabling a set of
cohesive possibilities, it becomes the basis for a guiding policy. Let’s
consider a quick example:

○​ You diagnose that teams across the company are struggling to build
an integrated product experience because of differing models for
identifying a customer. A couple of potential guiding policies are
identified:

■​ Build point-to-point integrations between different lines of
business. This may make sense if the business’s long term
goal isn’t clear. Perhaps an integrated product experience is an
experiment and may be abandoned, and this approach makes it
easy to deliver the most critical integrations.

■​ One authentication authority will be used by all systems. If
the business’s long term goal is clear — to build, say, a housing
super app, then this offers a more sustainable and cohesive
long-term approach.

2.​ Organizational architecture — Conway’s Law states that technical
architecture tends to follow organizational structure. We may realize that
our primary problems are ones of coordination — e.g., building duplicative
features, defining mismatched schemas or contracts, or creating disjointed
solutions. In this case, the guiding policy may not be to build the
architecture to meet the problem, but to work with management to reshuffle

111

the organization in a way that makes the problem disappear by aligning
incentives. Let’s consider a quick example:

○​ You diagnose that a platform in your organization is struggling to
meet the needs of the software development engineers who rely on
it. It appears that the platform team is prioritizing features in a
vacuum. Another team, under another director in your org, is creating
a “user friendly” interface to this platform — this team more routinely
meets with customers around the organization. As a result, a great
deal of duplicative mapping architecture is being introduced,
substantially increasing technical complexity and complicating both
operational and feature work.

○​ In this case, the best guiding policy may be to better align these two
teams within the organization. Perhaps to make them sibling teams
under the same leader; perhaps merge them entirely. The particulars
can be considered as coherent actions — the guiding policy is to use
an “inverse Conway maneuver” to align incentives and
communication structures.

3.​ Culture — The attitudes, values, and behaviors of the collective individuals
(engineers and managers) that constitute your organization will be a
significant — even primary — determinant of outcomes. A guiding policy
may be to change a particular cultural dimension — e.g., emphasize
operational excellence, or create a welcoming environment for design
inspection. Let’s consider an example:.

○​ You diagnose that code changes are not rigorously tested prior to
release,and that a general attitude holds among junior engineers that
values speed over quality. As a result, bugs are being introduced —
and reintroduced — which impacts the customer experience and
ultimately slows down long-term velocity.

○​ You might decide that your guiding policy will be to swing the
pendulum back from speed to caution. You communicate to
leadership that you will be heavily focusing on quality and
correctness with juniors in order to start a cultural course-correction.
The particular coherent actions might look like insisting on written
test plans and inspecting MRs for automation test cases.

Next we’ll discuss approaches to consider when constructing a guiding policy.

112

Technique: Delivering incremental value

“Working software is the primary measure of progress.”

— Agile Manifesto4

The business will naturally bias towards delivering value to customers as early as
possible. This is how we continue to keep customers engaged with our product,
and as principal engineers, it’s our job to pave the way towards the long-term
vision by being intentional and thoughtful about the incremental steps we take.
This means not only addressing immediate needs but also ensuring that each step
aligns with and supports the broader strategic goals.

Successful teams have momentum, and maintaining this momentum requires a
guiding policy that supports continuous value delivery without compromising
quality or operational rigor. Delivering incremental value is a strategic approach
that enables us to continuously and iteratively deliver value to customers while
maintaining a clear focus on long-term goals. Unlike traditional methods that may
involve large, infrequent releases, progressive delivery emphasizes incremental,
controlled releases that allow teams to gather feedback, validate assumptions,
and make adjustments in real-time. This approach ensures that each step taken is
intentional and aligned with the broader strategic vision, rather than just a series
of isolated forward movements.

This approach is fundamentally different from (and often mistaken for) simply
delivering frequently. Without a strategic framework, incremental steps can lead
to a fragmented and disjointed product that may meet short-term needs but fail to
achieve long-term goals. Incremental delivery, on the other hand, ensures that
each step is part of a cohesive plan, with clear milestones and checkpoints that
guide the team towards the desired outcome. It allows for continuous
improvement and refinement, ensuring that the product evolves in a way that is
both a sustainable way of working and is aligned with the overall business
strategy.

4 Jeff Sutherland, Ken Schwaber, Kent Beck, et al., The Agile Manifesto, 2001.

113

https://agilemanifesto.org/

In part one, we discussed the technique
of working backwards, which involves
establishing a desirable vision and then
determining the major system
components needed to achieve it. That
same methodology can be woven into
your technical strategy. Working
backwards helps us define what we want
to achieve, and our technical strategy
defines how. In the technical strategy we
break our vision down into a coherent,
logical roadmap, which aims to bring
value to customers one step at a time. We
ensure that the order of feature delivery

makes sense, and that each release tells an evolving story to our customers that
culminates in our desired end state. At any point in our journey, we may pivot or
stop, knowing that even though we have not gotten to the end of our product
roadmap as we initially intended, we have managed to deliver something of value
along the way. And by including engineering priorities in our planning, we have
also left things better than we found them.

Technique: Experimentation and learning

“You relentlessly seek to better understand the particulars of your dependencies, your
customers, and how to influence others across your organization/the company.”
Learning facet

— Zillow Leveling Guide

In part one, we discussed building a proof of concept as a technique to help us
experiment with and learn about technical concepts. It’s a way to establish a
clearer understanding of the feasibility of a particular concept or technology.
There is another key technique that can be highly beneficial to drive learning:
learning from real customers. Their feedback gives you direct insight into what
they need, what’s working, and where they struggle with your product. When you
use those insights to shape your strategy, you build products that people actually
want — leading to higher adoption and better results.

114

 Antipattern

It’s critical to understand the difference
between a strategic plan designed to
deliver value incrementally and the
common pressure engineering teams may
feel to simply ship something to show
value. These are diametrically opposed
approaches to our craft, and only one of
them is a thoughtful, intentional approach
to balancing short term value and long term
goals. Remember to always seek to
understand business priorities, and you
can avoid falling into the trap of
date-driven development.

A/B tests
A/B testing helps you make smarter,
data-driven decisions by comparing two
or more different versions of a feature and
seeing which performs better. It gives you
empirical evidence for how users behave,
allowing you to shape strategy early in the
development process.

Run A/B tests early and with intention.
Move quickly to gather your learnings, but

be disciplined about what comes next. When tests fail, you must be rigorous in
discarding the corresponding code, as it can contribute to long-term technical
debt. Conversely, when a test succeeds, strengthen it. MVPs need to be
hardened, ensuring that operational rigor and high quality are retrofitted before
moving on. This approach helps maintain a balance between innovation and
stability, allowing us to build robust systems that can evolve over time.

●​ Move fast to learn. Implement A/B tests quickly to gather insights and
validate hypotheses. The faster we can learn from these tests, the sooner
we can make informed decisions to improve our strategy.

●​ Rigorously discard. Be scrupulous about cleaning up failed experiments
and their corresponding code. Keeping unnecessary code can lead to
long-term technical debt, which can weigh the system down and
complicate future development

Technique: Develop a framework for prioritizing technical debt

“Try and leave this world a little better than you found it…"

— Robert Baden-Powell5

Technical debt happens when we choose expedient solutions over optimal ones
— often to meet tight deadlines or deliver short-term business value. It’s

5 Attributed to Robert Baden-Powell, founder of The Boy Scouts Association, in his farewell
address to Scouting, 1937.

115

 Antipattern

A/B testing can be powerful, but it’s not a
strategy in and of itself. Relying on it for
every decision can become an anti-pattern.
Teams can lose direction, chasing small
wins and risking optimizing for local
maxima rather than long-term impact.

https://en.wikipedia.org/wiki/Robert_Baden-Powell,_1st_Baron_Baden-Powell
https://en.wikipedia.org/wiki/Robert_Baden-Powell,_1st_Baron_Baden-Powell

sometimes unavoidable, but if it’s not managed well it can lead to future difficulties
in adapting to new and changing requirements, long-term inefficiencies, increased
maintenance costs, and reduced system performance. A principal engineer’s role
is to help the product and engineering teams balance both tracks: moving fast
when it makes sense, and investing in stability where it matters most.

Identify and prioritize technical debt
The first step to paying off technical debt
is identifying and prioritizing the areas of
your codebase and architecture that need
attention. This involves analyzing metrics,
conducting code reviews, and gathering
input from team members, including
understanding challenges and concerns
which your product and design partners
are facing.

Maintain a debt list within your backlog.
Each time you incur debt, enter the tasks
needed to pay off that debt into your
tracking system, along with an estimated
effort and schedule. Use the debt backlog
to track your tech debt progress. Any
unresolved debt more than 90 days old

should be treated as critical. Approach this kind of work in the same way as you
do product asks. If you're using a scrum process, maintain the debt list as part of
your product backlog. Treat each piece of identified debt as a scrum story, and
estimate the effort and schedule for paying off each debt — the same way you
estimate other stories in scrum. Prioritize debt based on its impact on
functionality, maintainability, and business needs.

Work with your product partners to educate them on the consequences of each
particular piece of debt: Is it impairing product quality or velocity? Is it leading to
an increase in incidents which are detracting from the team’s overall capacity and
ability to devote time to other priorities? Is it resulting in a higher spend on
infrastructure or tooling than we would like, impacting our bottom line? If so, work
with them to regularly prioritize this work against other items in the team backlog,
ensuring all participants in the prioritization conversation understand the relative
tradeoffs for each decision. Remember: We are all owners, and work planning is a

116

 Antipattern

Simply labeling engineering issues as "tech
debt" or "toil" is inadequate. It is crucial to
clearly articulate the specific problems
being observed and propose actionable
solutions. This is especially important
because not all partners are engineers and
they need to be brought along in
understanding the impact and necessary
steps to resolve it. For example, instead of
saying, "We have tech debt in our
codebase," it is more effective to explain,
"Our current architecture causes frequent
outages and slow performance, which can
be mitigated by refactoring our service
layer.”

shared exercise in which you, as a principal engineer, are expected to have a
strong, well-informed and well-balanced voice.

Guiding policies for mitigating technical debt
Establishing guiding policies for mitigating technical debt can be a crucial step in
ensuring that this type of work is consistently prioritized and managed effectively.
Without a clear framework, technical debt can accumulate unnoticed, leading to
increased maintenance costs, reduced system performance, and slower delivery
times. By implementing these policies, teams can align their technical initiatives
with business priorities, ensuring that both immediate and long-term goals are
met.

Below, we describe some established guiding policies which you may have come
across in your career. Following this section we’ll explore the tradeoffs between
some of these ideas in our example scenario.

1.​ Reserve capacity: Some teams reserve a portion of their capacity for
technical debt work, or they create dedicated projects for significant
architectural initiatives. At Zillow we use the concept of 15% time, which is
intended to create space in both budgeting and planning so teams can
focus on tech debt mitigation and other engineering-excellence work.

2.​ Systematic overestimation: A policy of systematic overestimation involves
intentionally overestimating the time, resources, or effort required for tasks
and projects. This approach can help create a buffer for unforeseen issues
that reduces the risk that the engineering team will be left with inadequate
time to deliver high-quality systems and prevent the accumulation of future
tech debt.

3.​ Feature flags governance: You have likely fallen victim over time to feature
flag bloat and poor practices around their implementation. To mitigate this,
you may consider implementing guidelines for the use of and removal of
feature flags across your codebase.

4.​ Service level objectives: SLOs can track the reliability of services. By
setting clear SLOs, teams can monitor and improve the operational
excellence of their services. This ensures that reliability and performance
are consistently measured and maintained, reducing the risk of
accumulating technical debt due to neglected service quality.

117

5.​ Code coverage metrics: Code coverage is a metric that helps you
understand how much of your source code is tested. It provides insights
into line coverage, conditional coverage, branches coverage, and functional
coverage, which can be used to improve the quality and reliability of the
codebase. Establishing minimum expectations for the level of test coverage
on new feature work, for example, may be a way to limit the accumulation of
a particular kind of technical debt and ensure that quality and testing are
embedded into work planning.

6.​ Test planning: This involves creating detailed test plans that cover various
quality areas, including functional, non-functional, and exploratory testing.
This work should be performed early in the development cycle in
partnership with your PM to ensure that test plans are part of the
requirements definition process. This allows you to identify and mitigate
risks early, improve code quality, and maintain a sustainable development
pace.

7.​ Regular operational reviews: Operational reviews involve collecting and
analyzing key engineering and operational metrics across the organization
to ensure processes, coding activities, and resource allocation are
optimized for high performance, reliability, and quality. When both
engineering and product teams have visibility into this data, you can better
understand how your software operates in practice, respond to incidents,
anticipate future problems, and proactively build more resilient systems.

8.​ Root cause analysis reviews: RCA reviews involve a thorough examination
of incidents to identify the underlying causes of customer- and
business-impacting incidents, and to implement corrective actions to
prevent recurrence. By conducting regular RCA reviews with both
engineering and product teams in the room, you can ensure that lessons
learned from past incidents are documented and shared across teams,
promoting a culture of continuous improvement and accountability.

In each of the following scenarios, you could apply a guiding policy to mitigate
technical debt or reduce the risk of technical debt accumulation. Let’s evaluate the
risks and tradeoffs associated with each policy, then select the best option for
each situation.

118

Scenario 1
You’ve developed a clearer understanding of what the business wants to achieve
with the Virtual Tours concept. You’ve mapped out the technology landscape
through internal discussion and analysis, as well as external research, to inform
your technical strategy. You now have a reasonably clear plan for how to build a
robust video conferencing solution that will enable buyers to connect with an
agent in the Zillow app, then schedule and "attend a virtual walkthrough of a
property. You work with several teams to craft a high-level architecture, and you
work with the program TPM to produce an initial, medium-confidence plan that
would let you deliver this product in around six months. You bring this timeline to
your product partners, who push back, indicating that there is a significant
marketing opportunity to be leveraged if we can ship an MVP of this product by
the end of the current quarter.

Considering that the business priority has been identified, what guiding policies
could you include in your technical strategy to mitigate the accumulation of
technical debt and project risk while still moving up the launch date to take
advantage of the marketing opportunity?

1.​ Reserve capacity

While this can be effective for getting technical debt work prioritized, it
should be considered a method of last resort. Reserving capacity is a
defensive approach that lets teams address non-specific tech debt during
work planning. A more integrated approach to avoiding new tech debt
would intentionally manage technical and feature work within a single
backlog. In this scenario, reserving capacity may help reserve time for
operational excellence and tech debt mitigation work, but it’s also likely to
make it harder to meet the marketing date goal. Reserving capacity may
also lead to a corresponding scope reduction across the product, which
could impair the overall customer experience.

2.​ Systematic overestimation

This approach can create a buffer for unforeseen issues, improve planning
and resource allocation, enhance team morale and productivity, and build
stakeholder confidence. However, it also has potential negative
consequences. Overestimation can lead to inefficiencies and wasted

119

resources if the buffer is consistently too large. It may also result in
complacency, where teams don’t strive for optimal velocity, and it can
create a false sense of security among stakeholders. This policy may also
result in lost trust with stakeholders and partners, which can be very
difficult to correct. In this scenario, it’s also likely to make it harder to meet
the marketing date goal, which could result in a corresponding scope
reduction across the product and an impaired overall customer experience.

3.​ Service level objectives (SLOs)

Setting these goals during product development gives teams agreed-upon
expectations for quality outcomes and limiting the accumulation of tech
debt. The downside of this policy is that you may not be able to tell whether
you’ve met your goals until after you ship the new work. You may need to
add specifics, such as establishing minimum expectations for the level of
logging, monitoring and alerting that should be implemented with all
software changes. In this scenario, it would be beneficial to align early with
your PM partners on quality and success metrics so you can have
collaborative and informed discussions about work prioritization and risk
management throughout the project lifecycle.

Option 3 is generally the best approach, as it aligns both engineering and product
stakeholders to a common goal with measurable results. The first two options —
though pragmatic and often used in the industry — reduce communication and, in
the case of Option 2, can breed systemic distrust between stakeholders.

Scenario 2
During development of the new Virtual Tours product, there is a production
incident with one of the key services being refactored: the tour scheduling
service stops responding to requests from the front end. Customers who attempt
to schedule in-person tours are met with a generic 404 error page. The issue lasts
for several hours and the team eventually root causes the problem to a recent
deployment which didn’t leverage a feature flag as the implementation plan called
for. Your manager schedules a 1:1 with you to discuss the incident and explore
ways to prevent a recurrence of this sort of problem during the remainder of the
Virtual Tours project. Looking back, what guiding policies could you have
introduced or improved to mitigate this sort of risk to the project?

1.​ Feature flags governance

120

Establishing mechanisms and processes to remove unused feature flags
(and the corresponding code) over time can prevent or reduce software
complexity and the accumulation of technical debt. Feature flags are
essential for experimentation and coordinating software releases, but they
should not replace software testing. In this instance, the team is likely using
feature flags incorrectly as a protection mechanism and not implementing
the right level of testing for the system(s) they are changing. Feature flag
governance is a good policy to apply to address existing technical debt, but
a stronger mechanism here might be to focus on improving the team’s
testing and verification practices.

2.​ Code coverage metrics

Code coverage alone isn’t a reliable measure of test quality — but it’s still
useful alongside other methods. Over-focusing on the metric can
encourage poor habits that only improve the one number rather than
verifying other complex, critical areas of the system. In this situation,
constructing a more intentional and thorough test plan — as well as
establishing some baseline code coverage expectations — may strike a
good balance.

3.​ Test planning

This project may have been missing early PM alignment on the scope and
approach to testing. Setting these expectations early during product and UX
design will help you have a more collaborative and informed discussion
around work prioritization and risk management throughout the project
lifecycle. Establishing a test plan upfront can set expectations for the need
to continuously introduce automation testing for all code changes
throughout the project, as opposed to relying solely on feature flags for
protection.

4.​ Root cause analysis reviews

This practice can help identify systemic issues and areas of technical debt
that need attention, thereby improving the overall quality and reliability of
the software systems. Like operational reviews, RCA reviews can be a
powerful tool to drive remediation actions, but will largely drive outcomes as
a reactive response to negative observations or incidents rather than as a
proactive prevention measure. In this instance, the team should definitely

121

perform an RCA review for the incident, but this policy is by design a
retrospective, and will not itself reduce ongoing risks.

None of the above options are a silver bullet — such is the reality of engineering
complex systems. Option 4 might be the best approach for this particular
situation: the problem remains ambiguous — we’re not quite sure why the feature
flag wasn’t leveraged as planned — and so running a retrospective process with
the engineering group is a necessary first step to understand the problem itself.
Once we know more, we’ll be better positioned to evaluate the relevancy of the
other options to prevent the issue from recurring in the future.

Ultimately, selecting guiding policies to apply within your technical strategy is an
exercise in evaluation risks and tradeoffs. No system is ever perfect, and
maintaining a balance between product innovation and technical excellence is an
evergreen challenge.

Exercise

What guardrails or tenets could you put in place to help balance the need to
move fast (business priorities), with the equally important need to deliver
high quality products that move us towards the technical vision
(engineering priorities)? Reflect on the discussion of technical debt
mitigation: What guiding policies have you applied or attempted within your
organization to address tech debt within systems you own? What has
worked? What hasn’t? What other ideas do you have for guiding policies
that you could apply to your current project?

Section 4

Coherent actions

“You understand that a curated set of fundamental strengths enables a great variety of
particular features, quickly and affordably. You build systems that anticipate change; you
enable an architecture where it is easy to disband and replace particular systems when
the need arises.” Architecture facet

122

“Furthermore, you treat operations as an architectural concern, treating operational health
as a first-order design requirement.” Operations facet

— Zillow Leveling Guide

Coherent action is the third — and arguably most important — element of a good
strategy. As mentioned earlier, a strategy without actions is not a strategy at all.
Too often, leadership teams consider high-level objectives their strategy and stop
there. But a good strategy must contain action: without it, strategy without action
is like an unsharpened knife. It looks useful, but it can’t do the job.

Let’s revisit our description of coherent actions:

Coherent actions are the specific steps required to carry out the guiding
policy. The actions adopted should be consistent and coordinated. This
means that our technical initiatives, from reducing technical debt to
implementing new features, must be aligned and executed in a way that
supports our overall strategy.

In many respects, defining coherent actions is the easy part of technical strategy
— not because the details are simple or the methods straightforward but because
this is what we’ve practiced all of our careers. Define a project plan to deliver a
feature; identify a model to refactor roles and responsibilities; find the scaling
bottleneck; so on. You are an expert in your domain, and you probably have a
pretty good sense of how to go about taking specific concrete actions in
accordance with your guiding policy. Coherent actions are the sharp end of our
strategy.

So this section will speak to different patterns for approaching specific problems.
These are tried-and-true ways of developing coherent actions for different
classes of problems.

Example: Strangler fig
As engineers, we are often faced with a legacy system — typically a monolithic
architecture — which requires refactoring and perhaps re-platforming in order to
accommodate a future set of planned capabilities. It can be difficult to plan how
and when to do this type of work. It is usually a large undertaking, and a risky one
— we don’t want to break the product experience, but we must be able to improve
and modernize our system architectures and infrastructure dependencies.

123

The strangler fig approach is a method
for rearchitecting a system incrementally,
allowing for continuous operation while
gradually replacing parts of the old
system with new components. This
technique is inspired by the way a
strangler fig plant grows around a host
tree, eventually replacing it entirely.6 The
approach involves building new
functionalities alongside the existing
system and slowly migrating users to the
new system. Over time, the old system is phased out as the new system takes
over. This method minimizes disruption and allows for iterative progress, making it
a practical solution for complex system migrations.7

Example: Shadow runner
Refactoring and re-architecting a system often presents the highest degree of risk
in our work as engineers. We already have customers, and they have established
expectations. It’s imperative that when performing a like-for-like refactor of an
established system, we are able to verify that the changes we make leave the
system functioning as it did prior to the refactor. In the industry it’s often said that
unit testing is a useful tool for this purpose, but the reality is that unit tests are far
more tightly coupled to the implementation than they ideally should be. They may
cover fewer of the critical parts of the codebase than we would like, making unit
tests deficient as a reasonable measure of quality assurance.

The shadow runner approach is a method for testing a system by running a
parallel version alongside the production environment. This technique allows
developers to test non-functional changes using a subset of production traffic
without impacting the live system. The shadow runner platform captures and
analyzes production traffic to identify regressions in responses and latency. By

7 “Strangler Fig Pattern,” Microsoft Learn, Azure Architecture Center, February 2025,
https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig.

6 Martin Fowler, “Strangler Fig Application,” MartinFowler.com, August 2024.

124

 Antipattern

Relying on an assessment of operational or
business metrics to verify the correctness
of a refactored solution can’t replace
thorough system testing. Refactoring and
re-architecture projects must have a
cohesive and thorough test plan, ideally
driven through automated regression
testing — the most reliable form of quality
assurance engineers have access to.

deploying changes in a non-invasive manner, it enables teams to collect empirical
data over time, surfacing small deviations that might otherwise go unnoticed. This
approach is particularly useful for ensuring the stability and performance of
critical systems during migrations or updates.

Example: Stitch a solution together with steel threads
For large projects, craft a narrow use case that spans the systems under
development and demonstrates real business value early. This technique is
sometimes called a steel thread. Thread refers to the use case’s narrow focus: just
enough to prove value while spanning the relevant architecture, ignoring edge
cases in favor of the primary path of execution. . Steel points to the durability of
the technique.. By cutting end-to-end through a fundamental use case, it creates
an architecture others can build on. .

The steel thread approach has a number of advantages:

●​ Enables teams to work in parallel as soon as the steel thread is built,
lowering team dependency

●​ Derisks the bulk of the complexity early by tackling an important edge case
first, as opposed to nibbling on the edges of a problem

●​ Scores an early win that can build momentum and motivate future
development and/or identify fundamental challenges early in the product
life cycle

●​ Forces collaboration by focusing attention on the points of integration
between the various systems. Integration points are often the most
challenging to change later because they typically involve coordination
across many teams.

●​ Breaks down a large, complicated project into a more manageable first step
that can be iterated further

A steel thread is in many ways the architectural equivalent of a proof of concept,
which is defined at the implementation level. They both aim to quickly
demonstrate feasibility and business value early. They are both effective at
defining a manageable initial step in the context of a larger project by ignoring
details that are extraneous to the primary business objective. The major difference

125

is that a proof of concept is typically intended to be abandoned after
implementation, whereas the steel thread is meant to create an enduring
architectural pathway to iterate upon. In this way, the steel thread requires more
planning and collaboration than a proof of concept, which may be a solo effort.

The technique also shares some
similarities with the concept of a minimum
viable product (MVP), in that they both
aim to quickly verify business value. A
steel thread can be an excellent first step
in building an MVP. However, a steel
thread isn’t expected to handle all the use
cases and particularly edge cases that
even an MVP might. A steel thread
needn’t be end-consumer facing at all —
it merely needs to demonstrate the

feasibility of the architecture in addressing the business case. You might also have
noticed the similarities with the strangler fig pattern: an approach which is, in
effect, a steel thread applied to a refactoring or migration project.8

Exercise

Do any of the examples of coherent actions outlined in this section resonate with
you? Have you ever intentionally applied one of these approaches in your
strategy? Can you see opportunities to use one of these actions as part of a
strategy you are actively developing?

8 If you’d like to read more about the steel threads technique, this short article is a great primer.

126

 Antipattern

A steel thread is often confused with a
prototype. While a prototype is typically a
throwaway model used to test concepts, a
steel thread is meant to be an enduring
architectural pathway that should be
iterated upon. Treating a steel thread as a
prototype risks neglecting the necessary
planning and collaboration required for a
robust and scalable architecture.

https://www.rubick.com/steel-threads/

Section 5

Putting it all together: Crafting a strategic
proposal

“You are expected to identify, define, socialize, and break down novel problems in your
organizational domain.” Strategy facet

“Your design documents are models of reasoned decision making, persuading the reader
to accept a conclusion through the careful specification of the problem, thorough
presentation of context, and rigorous analysis of trade-offs. You use data to bring clarity
to contentious issues.” Communication facet

— Zillow Leveling Guide

In part one, we discussed the need to delve into technical uncertainties and
proactively identify and articulate emergent problems. As a Principal Engineer,
your role involves reducing ambiguity by crafting coherent plans and architectures
for new business initiatives, assessing whether solutions are addressing the
problem correctly, and persuading others to understand and address these issues
effectively.

We also discussed a couple of techniques to help you drive down ambiguity:
proof-of-concepts and two-way doors. In this section we will introduce you to a
few more techniques to help you craft a comprehensive and thoughtful strategy
that marries business priorities and technical needs.

Technique: The power of writing it all down
We’ve discussed the significance of writing and communication as essential tools
for influencing and guiding technical projects. And we’ve stressed how articulate
and timely communication helps prevent misunderstandings, keeps projects on
track, and fosters a collaborative work environment.

Now we’ll discuss how to articulate your strategy clearly so that it helps you build
consensus, and drive towards the outcomes you want..

127

Assume zero context
Assume that those reading your document may not be familiar with all other
documents and prior discussions. When articulating your strategy, be sure to
summarize the diagnosis you have constructed and the guiding policies that are
influencing how the strategy is shaping up.

Why before what
Much more important than what you are proposing is why you are proposing it.
This gets to the heart of the diagnosis of your strategy, and this context is crucial
in helping others understand your thought process and decision-making journey.
It also helps others reason about your approach, question assumptions you have
made, and potentially offer alternative views that could achieve the same
outcomes in a different way.

Technique: Articulate risks and tradeoffs
Articulating risks and tradeoffs is a crucial technique in developing a robust
technical strategy. This process involves clearly documenting potential risks and
the tradeoffs associated with different strategic decisions. Doing so ensures
transparency, aids in making informed decisions, and helps you gain stakeholder
trust.

A comprehensive strategy document should include sections that detail the
business priorities and goals that are driving your strategy and influencing the
guiding policies. This might include a problem definition, scope details, high level
architectural considerations and recommendations, and alternative options
considered. Within these sections, explicitly outline the risks associated with each
option and the tradeoffs involved if that option were chosen. This might include
potential impacts on performance, scalability, maintainability, and cost. It might
discuss how one solution leads to larger upfront investment for longer term
benefits, or another approach will let us get faster learnings but also be less
suitable to address our best understanding of the long-term objectives and lead to
rework in the future. By presenting this information clearly, stakeholders can
better understand the implications of each decision and the recommendation you
are making.

128

In some cases, you may not yet have enough data to fully understand all risks and
tradeoffs. There may still be key elements of uncertainty in your strategy, and
that’s where the following techniques can come into play.

Technique: Strategic evolution

“Everybody has a plan until they get hit.”
— Mike Tyson9

Technology changes. Business changes. A robust technical strategy is not static:
it should be designed to actively collect and adapt to new information. We
discussed particular techniques to reduce ambiguity through learning, such as ,
two-way doors, and quantifying problems. A good guiding policy should
encourage their use.

We’ve also talked about the importance of establishing a clear diagnosis that
considers both the business priorities you’re aiming to meet and the technical
landscape in which you’re operating.

We also outlined a few coherent actions you can weave into your strategy, which
might help you address particular classes of problems.

The final thought we want to leave you with is this: Be ready to embrace change,
but don’t shy away from building an ambitious vision for the future and building a
plan to get there. This, fundamentally, is the mission of your technical strategy.

A comprehensive strategy should always encompass three key facets:

1.​ Target state: Where we want to go — This is the desired future state of the
software ecosystem, aiming for high reliability, efficiency, and
maintainability. It sets the vision and long-term goals that will guide all
strategic decisions in the future, until the target state itself shifts.

2.​ Current state: Where are we now — This involves a thorough assessment
of the current situation, identifying existing challenges such as technical

9 The champion boxer has delivered versions of this quote numerous times over the years, as he
explained in a 2012 article: Mike Bernadino, “Mike Tyson explains one of his most famous quotes,”
South Florida Sun Sentinel, November 9, 2012. Attribution via Quote Investigator.

129

https://quoteinvestigator.com/2021/08/25/plans-hit/

debt, complex architectures, and inconsistent service reliability.
Understanding the current state is crucial for diagnosing issues and setting
a realistic path forward. Establishing mechanisms — such as a debt backlog
or operational review processes — ensures that you and your team can
maintain a relatively fresh understanding of the current State, as it
continuously changes.

3.​ Next steps: What we are doing next — These are the immediate actions
and coherent actions required to transition from the current state towards
the target state. It’s important that you recognise you may not ever reach
the target state you established in this strategy, but being clear about the
ultimate goal of your strategy ensures that every step you take is
intentionally aimed towards that ambitious vision you have.

A few final methods to consider:

1.​ Living documents: Treat strategy documents as living documents that are
regularly updated to reflect new insights, decisions, and changes in
direction. This approach ensures that the strategy remains relevant and
actionable over time.

2.​ Continuous feedback loops: Establish continuous feedback loops to gather
input from various stakeholders, including engineers, product managers,
and business leaders. Regularly review and incorporate this feedback to
refine the strategy.

3.​ Abandoning failed ideas: Be willing to intentionally abandon ideas and
experiments that do not yield the desired results. Recognizing and
discarding unsuccessful approaches is crucial for focusing resources on
more promising initiatives.

4.​ Balancing innovation with established practices: While it’s important to
adopt new technologies and methodologies to stay competitive and improve
overall system quality, it’s equally important to maintain stability and
reliability for your customers by leveraging familiar, proven practices. This
balance ensures that innovation does not come at the cost of operational
excellence, and that the organization can adapt to new information while
maintaining a solid foundation.

By incorporating these principles, you can ensure that your technical strategy is
not only robust but also adaptable, allowing you to navigate the complexities of

130

the evolving technological landscape effectively, while maintaining a long-term
focus on the future vision for the business.

Final
Exercise

Consider an upcoming project that you are involved in, where the development
strategy is still in the early phases of development. Using what you’ve learned,
create a 1-2 page strategy briefing for that project.

1.​ Diagnosis
a.​ What is the primary business motivation that we're aiming to

solve?
b.​ What are the key engineering priorities that may influence our

strategy for this project?
c.​ Are there relevant areas of industry that could inform how we

approach this project?
2.​ Guiding policies

a.​ Outline 2-3 key guiding policies that will influence how your
strategy will be executed.

3.​ Coherent actions
a.​ Outline 2-3 coherent actions which you can take to advance the

strategy.

131

Conclusion

You’ve reached the end — well done! We know you’ve invested time in this book, and
we’re confident you’ll find yourself applying these skills in your career. You now have a
toolkit to help you:

●​ Create outsized impact through leverage
●​ Cultivate the relationships that hold organizations together
●​ Leverage your influence without formal authority
●​ Scale your own practice sustainably
●​ Craft resilient technical strategies that serve both today and tomorrow

This book reflects our own experiences and challenges at Zillow — but the lessons apply
just as well to any engineering organization that values deep technical leadership. If you’d
like to dive deeper into our thinking and stories, check out the Zillow Engineering Blog,
where we publish posts on architecture, best practices, and the projects driving our
business forward.

We’re always looking for brilliant engineers to join us. If you’re passionate about building
products at scale and want to help shape the future of real estate technology, explore
opportunities on our careers page.

Finally, stay connected! Follow Zillow on LinkedIn to get updates on the business,
conferences, talks, and community events.

Here’s to your continued growth as a technical leader. May these practices serve you well
— wherever your path takes you.

— The Multiplier Authors

132

https://www.zillow.com/engineering/
https://www.zillow.com/tech
https://www.zillow.com/careers
https://www.linkedin.com/company/zillow

About the authors
This book was co-authored by four of Zillow’s Senior Principal Engineers, each
contributing equally to writing, editing, and refining the material. Together, they
developed and co-led in-person training courses to reinforce the content of this
book. They are listed below alphabetically by surname.

Nathan Figueroa is a Senior Principal Engineer at Zillow with over 20 years of
software engineering experience, including 12 years at Zillow. He has led
numerous impactful initiatives at Zillow, including designing systems for ingesting
and serving property photos, migrating critical listing data workflows to streaming
architectures, and significantly shaping Zillow’s real estate data infrastructure.
Passionate about fostering technical leadership and career growth, Nathan has
been active in shaping Zillow's engineering career frameworks and interviewing
practices. He lives in Seattle, Washington, with his husband and their four
children.

Kerry Hart is a Senior Principal Engineer at Zillow, where he leads engineering
strategy and architecture for the company’s core platforms — including compute
infrastructure, identity, communications, financial systems, and data architecture.
Kerry has played key roles in shaping the company’s data mesh vision,
engineering role framework, and platform modernization efforts. Prior to Zillow,
Kerry spent seven years at Amazon Web Services (AWS), where he designed,
built, and operated next-generation infrastructure for core billing systems. He
currently lives with his wife on a hill in New Hampshire, where nature's idyllic
panorama is interrupted by the sound of their children making mischief.

Ryan Lohan is a Senior Principal Engineer at Zillow with over 20 years of
experience leading complex, large-scale systems. A passionate software engineer
and change leader, he is dedicated to helping organizations achieve engineering
and operational excellence through sustainable evolution and durable
mechanisms. Previously, he was a Principal Engineer at Amazon, where he played
pivotal roles in AWS and the launch of Buy with Prime. Proudly Australian, Ryan
brings a global perspective to his work, and has also been a certified PADI scuba

133

instructor. He now lives in the Pacific Northwest with his wife and three children,
who keep him grounded, inspired, and frequently outnumbered.

Ralph McNeal is a Senior Principal Engineer at Zillow, shaping the design,
architecture, and strategy for teams that deliver core services and platforms
across Data & Analytics, Networking, Infrastructure, Operations, and DevEx. Prior
to Zillow, he was a Staff Engineer at Twitter, responsible for building and operating
distributed infrastructure that underpinned the company’s enterprise-wide code
repository, CI pipelines, and developer tooling. He also brings
product-development expertise, having designed and delivered large-scale
e-commerce platforms and globally deployed SaaS solutions. A native of St. Louis,
Missouri, who began his career in high school, Ralph offers decades of hands-on
experience leading high-impact engineering teams.

134

Acknowledgments
This book would not have been possible without the many people who shaped its
content, guided its direction, and helped bring it to life.

We are especially grateful to Kristin Acker for her steady leadership and
unwavering support. Her belief in the importance of this material — and her
behind-the-scenes work to clear roadblocks — enabled us to build something
ambitious and lasting.

We owe deep thanks to the Learning and Development team for their thoughtful
leadership in translating our materials into an engaging curriculum. From
conducting interviews with principal engineers and synthesizing key insights, to
shaping the course content from initial concept through final delivery, their work
was foundational to both the training and this book. Their partnership throughout
has been invaluable.

Many engineers and engineering managers across Zillow Group invested their
time to review early drafts of the training materials and offer feedback that made
them better. Their thoughtfulness helped ensure that what we built was both
practical and grounded in the realities of our work.

Likewise, the Software Development Engineer Leveling Guide included in this
book’s appendix reflects the careful work of many contributors over the years.
Engineers and managers collaborated to ensure the guide accurately captures the
expectations and realities of technical leadership at Zillow.

And of course, thank you to our families and spouses, who supported us through
the long hours of writing, editing, and iteration. Your patience and encouragement
made this possible.

135

Appendix

136

Zillow Group Core Values
We place a huge emphasis on fostering a culture that encourages people to share
their ideas and be able to access the support they need to turn those ideas into
innovations that drive our company forward.

Consumers are our North Star
With quality at the center, everything we build and deliver is with consumers in
mind. We also partner with industry professionals to create the best consumer
experience.

Do the Right Thing
We operate with integrity in our own work, putting the good of consumers, our
colleagues, business and the industry above individual interests.

Turn on the Lights
Transparency is at the core of everything we do, making the implicit explicit by
documenting, educating and sharing the why of our work. This ensures no one is
left in the dark and everyone has the information they need to be empowered and
effective.

Own It
We aim high, move fast and deliver — each individual and team is accountable for
our growth and impact from start to finish.

Better Together
We navigate complex work, empower diverse perspectives, speak up and move
forward together. We collaborate with purpose and trust by including the right
voices.

We Play to Win
We do the hard work, take bold chances and lead with excellence to help more
people get home.

137

https://www.zillow.com/careers/our-values/

Zillow Group Software Development Engineer
Leveling Guide

1 Overview

This guide is intended to help you understand the Software Development Engineer (SDE) role here at

Zillow Group. You are critical to the success of this company: it is you that authors the software and

builds the systems that guide our customers through their real estate journey. This guide is intended to

help you through a similar journey—your career.

A note on the philosophy that underpins this guide: careers are complex journeys, and they rarely follow

a prescribed path. This guide seeks to capture the core qualities of the role at each level without defining

specific gates or checklists. It is intended to foster richer career development discussions between

engineers and management, not supplant them with an overly prescriptive model.

2 Role Description

As a Software Development Engineer, you are responsible for developing the software that underpins

the products and services we provide. You design, author, operate, and maintain this software. You are

accountable for the quality of the software you produce—the code and architecture you produce must

deliver customer value while being secure, reliable, efficient, and maintainable. You are pragmatic,

operating within resource constraints to build solutions that meet the needs of the business—and you

do so at the speed of the business. You are a steward of our technical capabilities, anticipating future

needs by building flexible, adaptable solutions.

The Software Development Engineer track is a long one. At junior-most levels, your impact may be

measured at the feature level and be achieved through small code changes; at senior-most levels, your

impact may be measured at the company scale and achieved through strategic initiatives. Across all

levels, one constant remains true: you execute within the context of the organizational hierarchy—your

team, your org; however, the scale you must consider tends to be at least one level above. A Senior

Engineer may execute within their immediate team, but think about their sister teams; Principals (and

above) are rooted in the technical context of their organization to ensure internal alignment, while

considering how their organization impacts the broader company.

Therefore, software engineering is a fractal: the behaviors embodied at the task level recur at the team

level, the cross-team level, the organizational level, and finally at the company itself. At junior levels, you

may be encapsulating complexity by organizing code into functions or classes; at more senior levels, you

may decompose a monolithic service into microservices; at the most senior levels, you're reducing

organizational complexity by shaping communication structures or organizational hierarchies. They're

conceptually similar but exist at different levels of abstraction and scope—a continuum exists across the

role. The difference between an SDE-I and a Distinguished Engineer may be perceived as a gulf, but not

as wide as it first appears.

138

3 Facets of the Software Development Engineer role

The Software Development Engineer role changes significantly over the full range of its ladder. The

following seven facets are intended to get at the very root of the role: these are the things that, though

they change in meaning and emphasis, are present in some way at each level. This guide is centered

around them.

Code. Code is the foundation of your craft. You author code to solve problems for the business.

You leverage intelligent tools and AI agents to optimize the coding process; you understand and

own the results. You organize that code to be understandable by others and adaptable to

changing needs, following the principle ‘leaving it better than you found it.’ You test the code to

ensure it is correct and efficient. At the junior-most levels, the authoring of high-quality code will

be your primary preoccupation. As you become more senior, you must not lose touch with the

codebase, even as other concerns compete for your time and attention.

Architecture. The definition and arrangement of our software is foundational to our ability to

adapt, scale, and operate our business. Architecture will have different meanings in different

contexts, ranging from the organization of large codebases and complex libraries to the roles,

responsibilities, and behaviors of distributed systems. At more junior levels, you will arrange

your software into structures that are adaptable and maintainable in order to deliver specific

features and behaviors. As you move up, your focus will shift to modeling complex domains in

elegant solutions—systems that can be recomposed in response to an evolving business and

scale to meet its needs. At senior-most levels, you treat architecture and organization as

inseparable concerns—you are as focused on the human as on the purely technical.

Operations. You operate the software you author, and own its operations. You rigorously

validate that you meet the contracts you’ve specified through metrics, dashboards, and alarms.

When something breaks, you know before our customers, and you fix the issue with deep

urgency. At junior levels, you will operate runbooks, debug minor issues, and learn the rhythms

of how to operate software. As you grow, you will become the expert responsible for resolving

the most pernicious and difficult issues. At senior-most levels, you cultivate operational

excellence across teams and organizations, often without the luxury of leading by example.

Communication. Your ability to influence is a direct function of your ability to write about and

speak to your ideas. At junior levels, this means authoring effective documentation and speaking

to technical context. As you grow, you will come to communicate complex technical designs in

written and verbal mediums. At senior-most levels, you will distill complex subjects for larger and

more varied groups, tailoring your communications to audiences ranging from junior developers

to executives.

Learning. As a software engineer, you never stop honing your craft and better understanding

your domain. Change is the only constant in our industry, and you change with it. The act of

139

learning is core to the early levels (P1, P2, P3): you are expected to grow out of these and into

P4. At these early levels, you are learning the craft skills (code, architecture, operations)

necessary to advance. At P4 and above, the nature of learning changes. Advancing to the next

level is no longer expected; you seek to improve or develop skills to better succeed in your role.

You proactively seek out the latest tooling, try new methodologies, and adapt to new patterns of

work. You are impatiently curious, quick to explore the ever-evolving technical landscape for

better answers to enduring problems. You continue to refine your expertise in your business

domain, seeking to ever-better align technology to business opportunity.

Leadership. You lead by influencing others without authority. You shape others through the

information you share, the individuals you mentor, the issues you escalate, and the ideas you

propagate. At junior levels, your leadership will be localized to your team: you will lead juniors to

produce high quality output on time, and you will influence management regarding specific

projects and solutions. As you move up, your leadership will expand beyond your team to your

larger organization. You will guide other technical leaders to common cross-cutting solutions or

shared architecture, and you will advise senior leaders and executives on matters of architecture,

strategy, and organization.

Strategy. Strategy is the act of substituting ambiguity for a set of options and making a reasoned

choice among those options. Your effectiveness at crafting strategy will be underpinned by your

growing domain expertise (both technical and business). As you grow, the problems you solve

will have a greater impact, the problem statement will grow more ambiguous, the trade-offs

more difficult to identify, and the feedback loop on whether you made the correct choice will

lengthen. At junior levels, you are seeking solutions to clearly scoped problems where the

trade-offs among options are well understood by your seniors and the feedback loop is short. At

more senior levels, your judgment and accumulated experience becomes more critical: you must

identify and choose a solution without pre-defined problem statements or success criteria—and

success or failure may not be revealed for quarters or years.

4 Career Progression Summary

As noted in the descriptions above, the meaning of each facet changes as you progress through your

career. In addition, the relative emphasis of each facet changes across the levels. The following visual

approximates this change.

140

This figure is meant to be illustrative of the broad changes over the course of the career. Do not use this figure to derive prescriptive
ratios among the categories, as the proportions will vary for each individual depending on circumstances.

At lower levels, you achieve impact by balancing your immediate impact through Code, Operations, and

Architecture against the need to Learn—in effect, at lower levels the company is choosing to invest in

you now in order for you to deliver more value later. At mid levels, you spend most of your time

exercising Code, Operations, and Architecture to deliver value—while you never stop learning, this

necessarily becomes a secondary focus. Furthermore, your emphasis among the

Code/Operations/Architecture trifecta will shift increasingly from Code and Operations to Architecture as

you grow. At higher levels, the responsibilities of Leadership occupy more of your time. Eventually, you

exercise your accumulated experience to shape and define Strategy.

The inflection that happens at P5 is significant. You must learn how to make resounding impact above

and beyond the individual team level. While your foundation remains your deep technical expertise, you

must be intentional to magnify the impact of that expertise: when you write code, it’s to blaze new trails

or solve exceptional problems; when you design, you are building foundational architectures that cut

across existing teams, systems, or domains; you spend much of your time influencing and shaping the

work of others. Strategy quickly becomes a primary focus.

Note that Communication is the one facet that doesn’t appear in this diagram: effective communication

underpins everything you do. You don’t trade time in one dimension for more time communicating; how

141

effective you are in a dimension is determined (in part) by how well you listen to others and express your

ideas.

5 Level Descriptions

The following level descriptions define characteristics that embody each stage of the Software

Engineering ladder. Each is intended to be read and digested independently, so that success is defined

and understood at each level. Comprehensively, it provides an understanding of role evolution as well.

The relative importance of each facet changes across the levels. The facets are intentionally ordered

within each level from greatest emphasis to least emphasis.

5.1 P1: Software Development Engineer Apprentice

Key Facets: Learning, Code

You are new to software development, with limited formal education in software. While you contribute by delivering

small features (or parts of features), your primary concern is to grow by developing your coding craft. When you

deliver, you will be working hand-in-hand with a mentor(s) to author code while learning foundational concepts and

practices.

Learning
You are learning the fundamentals of authoring code—and you are eager and able to do so, absorbing information

and internalizing guidance. You are learning how to leverage AI-driven tooling to understand new code bases, debug

problems, and avoid rote work. You are curious. Your mindset is that of someone keen to grow and to prove that

growth. You take care to learn from feedback and incorporate it into future work.

Code
You are new to coding, with limited formal experience. You are becoming fluent in a programming language, and

you are learning core concepts such as data structures, algorithms, and design patterns. You are learning the

software development cycle, including authoring tests to verify correctness and debugging failures.

Fluency is key to moving to the next level, and as you progress as a P1 you are able to demonstrate that increased

fluency. Your code style, organization, and documentation are improving over time, and the quality and

thoughtfulness of your tests is earning more and more trust that you deliver what you intend to deliver. You are

becoming more familiar with subsets of your team’s codebase, increasing your productivity. You work independently

more and more often.

Operations
You learn how the team uses metrics and other observability mechanisms to monitor system health and business

results. You seek to understand how your changes may impact production behavior and how this behavior is best

observed. You can speak to how the team triages issues and manages incidents.

142

Communication
You are learning how to communicate technical information. You are effective at communicating knowledge gaps to

your mentors—and you’re good at asking questions.

Architecture, Leadership, Strategy
You are developing an awareness of these concepts but this is not a focus.

5.2 P2: Software Development Engineer-I

Key Facets: Code, Learning, Operations

You are familiar with authoring software, but you are new to doing so in a professional context. You contribute by

executing specified units of work with consistent and timely quality. You rely on the team and your manager to

provide guidance around what work you undertake, the specifications of the design, and the quality of the

deliverables. You deliver on your commitments and are transparent about challenges and delays, asking for help to

unblock yourself when necessary. You grow by refining your craft and learning the ropes of the industry.

Code
You are a regular and effective contributor to your team, solving clearly-scoped problems with code. You leverage AI

coding assistants to iterate quickly when learning new code bases, investigating problems, and authoring or altering

code; you assess generated suggestions against the expected quality bar regarding maintainability, performance,

and best practices. You iterate on a solution with more senior team members, incorporating their feedback through

conversations and code reviews.

You leverage data structures, algorithms, design patterns, and test methodologies. You identify trade-offs among

approaches. You uphold the standards set by your team, routinely delivering code that is tested, easy to read,

performant, and documented.

Learning
You are an expert learner. You recognize that you are new to a profession, and you actively seek out and welcome

feedback in all aspects. You leverage AI to explore options and reason about trade-offs—you seek to learn from,

rather than simply use, what is suggested. You proactively seek to validate the choices you have made and reinforce

what you have learned by seeking feedback from seniors.

You are learning how to apply theories of code organization, maintainability, and adaptability in practice. You are

observing and asking questions about your team’s architecture, seeking to understand trade-offs and limitations.

You are becoming practiced in the varied behaviors and responsibilities expected of an SDE: how to operate

software, interact with Product, report status, escalate for help, follow the planning rhythms of your team, estimate

work, and share constructive feedback.

Operations
You are an effective member of your oncall rotation, able to triage and solve simple issues. You understand and

143

execute your team’s runbooks, and you are trusted to escalate when encountering incidents that fall off script. With

each rotation, you become more familiar with the behaviors of the software you operate and become more

effective at resolving issues. You understand how to reason about metrics, and work with the team to define and

modify metrics as your systems change. You are a steward of the team’s onboarding experience, seeking to ease the

process for future team members.

Architecture
Your problem solving tends to happen in the realm of code rather than architecture. However, you are observing

and asking questions about architecture, developing a fluency in terms, concepts, and models.

Communication
You are an active participant in team conversations, asking questions and making suggestions. You clearly

communicate technical information—how code behaves, the implications of your changes, the behaviors of the

systems you operate, etc.—to other members of your team. You author documentation for your outputs such as

code comments, commit descriptions, and ticket updates. You are learning to deliver meaningful feedback in code

reviews.

Leadership
Leadership at this level is primarily self-responsibility: you seek to earn the trust of your teammates and manager by

taking a proactive role in your personal development. You balance independent delivery—solving problems

yourself—with seeking guidance from seniors. When you don’t understand best practices or struggle to identify a

solution, you seek clarity by reaching out to others. You contribute to estimating the time it will take to complete

your tasks. You find opportunities to more actively participate in team processes in order to better understand

them. You hold yourself accountable to team decisions.

Strategy
You understand how your work impacts the team. You seek to understand how your team fits into your organization

and the larger company. You work with your manager and seniors to find opportunities to observe and participate in

strategy discussions.

5.3 P3: Software Development Engineer-II

Key Facets: Code, Operations, Architecture

You are a routine and effective contributor, important to the team’s collective success. You excel at independently

delivering clearly-scoped units of nontrivial work with timely quality, consistently. You design solutions to problems

with well-defined problem statements, and you act to help juniors meet commitments. You are active in team

discussions and respected for your opinions, helping inform how the team solves collective problems. You grow by

thinking about broader system design and developing early leadership skills.

144

Code
You are a routine problem solver, independently authoring high-quality code to solve non-trivial problems in a

timely and consistent manner. You effectively use AI coding assistants to expedite your workflows. You can better

judge when to trust AI-generated suggestions and when to validate them—and you rely less on senior engineers to

act as a backstop as a result.

You identify trade-offs, express these cogently, and document your decisions. You act on approved designs,

translating intent into functioning and effective systems. You understand the importance of refactoring existing code

for better performance, testability, and readability. Your code leverages patterns and test methodologies to enable

iterative and autonomous development. You consider the legacy of the code you create—you don’t just solve

today’s problem but anticipate the needs of future developers. You appropriately assess the complexity of your work

and meet your commitments.

Operations
You are a trusted member of your oncall rotation, resolving non-trivial issues with minimal guidance. You help

juniors resolve issues they don’t understand, and you are trusted to escalate to seniors when you need help. You

proactively shape team metrics, alarms, runbooks, and dashboards to improve the operational stance of the team.

You consider observability as a first-order concern in the changes you make, ensuring that system performance and

health are effectively measured.

Architecture
You independently solve well-scoped technical problems with few ‘unknown unknowns’—and you are trusted to

identify ambiguities and seek guidance from seniors. You are learning how to design software with clean contracts,

strong abstractions, and clear roles and responsibilities. You identify and articulate trade-offs among competing

approaches, and you document your decisions. You contribute to team architectures by engaging in design

discussions, proposing alterations, and considering cross-system interactions when authoring code.

Learning
Learning remains central to this level: you are actively trying to learn the skills necessary to grow to the next level.

You seek feedback and incorporate it regularly. You remain intent on becoming an expert in the crafts of coding and

operations, learning how to better leverage specific frameworks and technologies, employ AI-assisted tooling,

organize complex code, debug difficult problems, and apply best practices around CI/CD and metricing.

Furthermore, your curiosity extends beyond the immediate problems and patterns of work that define your

day-to-day: you are impatient with learning only ‘by doing’, and you proactively seek out new ideas, patterns, tools,

and approaches.

Communication
You clearly communicate technical information to others—you train teammates, explain particulars to stakeholders,

and communicate progress. You author design documents that capture trade-offs and justify choices. When you

review someone’s work, you seek to teach through constructive conversation rather than contradiction. You listen to

juniors, taking time to gather their input and elevate their voice.

145

Leadership
You are an active contributor to team processes and artifacts. While you excel at independent delivery, you

understand that your contributions are but one element in a larger team context. You are an active owner of that

context, helping maintain and improve the efficacy of your team. The trust you have earned is rooted in your ability

to communicate your approach, assumptions, trade-offs, and solution; you escalate early, never hiding problems.

You digest problems and propose solutions to seniors, rooting your designs in a rigorous analysis of trade-offs, edge

cases, and risks. Management and seniors trust you to accurately represent specifics, and your judgment is relied

upon when you hold particular context. You are an active and effective participant in team meetings, agile

processes, and planning rhythms.

Strategy
You proactively contribute to team conversations around solutions and prioritization, seeking to both understand

and influence how your team solves problems on behalf of the organization. You identify opportunities for

improvement (better experience, efficiencies, performance) relevant to your scope (particular feature, component,

or subsystem) and surface them to the team.

5.4 P4: Senior Software Development Engineer

Key Facets: Code, Architecture, Operations

You are a key contributor to your team, leading the way on the most important initiatives, designs, and operational

events. You coordinate closely with others to deliver value across multiple services or key components. You

habitually author effective architectures, deliver critical bodies of code, and shepherd the quality of the team’s

outputs. You are an expert on your team’s systems, processes, and business domain—and you understand how

these fit into the larger cross-team architecture. You contribute to projects that cut across teams and domains. You

are relied upon to resolve critical operational incidents, meet essential deadlines, and propose effective designs.

Code
As a senior engineer, you are an expert practitioner of your coding craft, setting high standards for your team’s

codebase. You are trusted to take the lead on the most complex and challenging work. Patterns, principles, and best

practices are second nature—you are a steward of the team’s codebase, and you cultivate it to maintain quality. You

understand that less can be more, valuing simplicity in approach. You actively seek out opportunities to refactor and

optimize code for better scalability, performance, and readability. You ensure that your team’s work is rigorously

tested using repeatable, automated patterns. You are skilled at integrating new frameworks, libraries, technologies,

and components.

You leverage AI coding assistants to amplify the value of your hard-earned expertise and deep domain knowledge.

These tools are a natural extension of your workflow: you know when to trust AI-generated code and when to rely

on your own judgment to revise, adapt, and dig deeper. You seamlessly correct output, pivot direction, or refine

solutions as needed, maintaining clarity and code quality throughout. You also recognize when AI tools are hindering

more than helping and set them aside in favor of your own expertise.

146

Architecture
You are an expert in multiple subdomains owned by your team, commanding a deep understanding of key

architectural paths. You influence and shape team architecture, working closely with Principal Engineers and other

Seniors to design, adapt, and grow your architecture to respond to changing business needs. You treat testability,

resiliency, and observability as first-order architectural concerns. You are deeply familiar with industry patterns and

technologies relevant to your domain, and you seek to import these as is useful.

Operations

You are an expert at operating your system. When unforeseen operational events happen, you are relied upon to

diagnose and resolve them—and ensure they don't happen again. You know the idiosyncrasies, weaknesses, and

limitations of your software. Proactively, you set the standard for dashboards, metrics, alarms, and runbooks;

reactively, you resolve the most difficult and critical issues. You identify patterns and trends in order to inform future

investments in code and architecture. You share your hard-earned knowledge through mechanisms that scale out

beyond yourself.

Leadership
You are respected for your expertise and are sought out by others for feedback and advice, both internal and

external to your team. You shape team practices and processes, proactively proposing changes, exploring new

options, and seeking to learn from others (both in and outside the company). You act as a focal point for projects:

coordinating deliverables, writing designs, ensuring accurate estimates, reviewing artifacts, and summarizing

progress to your manager. You embrace the responsibility of ensuring everything keeps working day to day. This may

mean unblocking a merge request or diving into a ticket; it may mean escalating on technical debt or authoring a

design proposal. You mentor juniors, improving their understanding of the craft and seeking to better integrate

them into team culture and process.

Communication
You communicate consistently and effectively with technical and nontechnical staff, including Product and Design.

You cultivate the ideas of your teammates. You seek to persuade instead of dismiss, treating alternative proposals as

opportunities to learn and refine. You listen to their concerns, feedback, and suggestions with an open mind. You

document your decisions clearly, articulating trade-offs and rationale in order to inform future stakeholders—you

are careful to preserve context in order to conserve hard-won wisdom.

Strategy
You are deeply familiar with how your team contributes to the organization's (and the company’s) overall strategy,

and you actively seek to shape your team’s deliverables to best meet those needs. Grounded in a clear

understanding of the customers you serve, you connect technical decisions to meaningful experience improvements

and broader business impact. You work with Principal Engineers on problems of indeterminate and variable scope,

providing context and identifying gaps. You decompose projects into independent work streams for juniors and are

accountable for both delivery and quality.

Learning
This is a career role, meaning that there is no expectation to move to the next level. If you relish technical delivery

147

and seek to become an expert in the crafts of code, team-scale architecture, and operational excellence, that’s

great—this is for you! Therefore, at this level learning takes on a new meaning: you shift from striving to become

competent in your craft to seeking true excellence. The technology landscape is deep and always in flux—you are

forever curious, for each day brings only more to discover, explore, and master.

5.5 P5: Principal Engineer

Key Facets: Leadership, Architecture, Strategy

You deliver critical business value by solving complex problems that span teams and organizations. You partner with

fellow leaders to identify problems and align on their nature; you are an expert in your craft and solve these

problems with elegant solutions. You are respected as a technical leader of your domain, demonstrating deep

expertise and embodying engineering excellence.

Impact is paramount, and you must scale. Sometimes, your impact will be greatest when you go deep to author

critical code or uncover a subtle flaw; at other times, your impact will be greatest when you act broadly to shape

approaches across several teams or systems. You are trusted to exercise your judgment—you take the initiative, and

you are skilled at communicating why, what, and how to your leadership.

Leadership
You are beginning to step out of a delivery-first mindset into a leadership-first mindset. To others, you are the

engineering face for your team(s): Principal Engineers, Product Managers, and others all seek you out and trust you

to represent the technical capabilities and constraints of your space. You guide your teams through change, whether

technological, architectural, organizational, or ways of working. You set a tenor of excellence by upholding a

high-quality bar without alienating others, seeking to cultivate and mentor.

You seek excellence in all things, such that your systems are archetypes of flexibility, maintainability, security, and

testability. You understand that your impact scales with your influence: you cannot uphold these standards solo, but

instead must rely on the team to embody them even when you’re not looking. You actively promote and model

collaboration, listening to feedback from others and successfully mediating contentious technical discussions. When

you identify workstreams in large projects, you guide juniors to effective solutions and inspect their estimates.

Architecture
You are the expert at your domain, and you leverage this expertise to build an architecture that is flexible,

performant, and efficient to the needs of the business. You seek to build and cultivate capabilities over features:

you understand that a curated set of fundamental strengths enable a great variety of particular features, quickly

and affordably. You build systems that anticipate change; you enable an architecture where it is easy to disband and

replace particular systems when the need arises. You encapsulate complexity from dependent teams, isolating the

particulars of your architecture from their implementations. You consider testability across systems as a first-order

concern, and you build systems that are easy for others to integrate with and test against.

148

Strategy
You solve problems of indeterminate and variable scope. The feedback cycles are longer than before, stretching

across quarters and into years—a solution must not only deliver incremental value, but withstand the test of time

via resiliency, scale, and adaptability. This longer iteration cycle has a consequence: the cost of being wrong is

higher. You offset this by leveraging your experience to effect high-judgment decisions, deliberately seeking signals

early and identifying reversible decisions.

You are expected to identify, define, socialize, and break down novel problems in your organizational domain. You

know that your domain is interconnected with the broader business, and you seek to root your solutions in that

larger context. You understand when and how changes to your solutions will better enable business strategy—not

just for your immediate domain but interdependent ones as well. You develop partnerships with key stakeholders,

seeking to influence designs across team boundaries and proactively inform Product roadmaps. You participate in

the planning rhythms of your organization. You are an expert in your business domain, shaping technical

investments to unlock long-term business capabilities.

Code
While architecture is becoming your primary focus, you remain a key contributor on critical code paths. You are not

expected to author better code than a Senior Engineer. Rather, you are expected to exercise your judgment to

deliver maximum value when you contribute code. Your code is deliberate, innovative, and aligned with broader

strategic objectives. You are adept at using AI tools to blaze new trails quickly, testing out novel approaches or

validating ambitious ideas to supercharge the business. You set and uphold high standards for organization,

patterns, and best practices across your organization.

Communication
You demonstrate effective verbal and written skills, communicating with everyone from the junior-most engineer to

the senior leaders of your organization. You cultivate collaboration, listening to and integrating feedback across all

levels. Your design documents are models of reasoned decision making, persuading the reader to accept a

conclusion through the careful specification of the problem, thorough presentation of context, and rigorous analysis

of trade-offs. You use data to bring clarity to contentious issues.

Operations
You are an operational leader, seeking to maximize your impact. At times, this may mean applying your expertise to

resolve issues that challenge seniors or cut across teams. At other times, it may mean upholding standards through

inspection, working with management to tweak processes, or blazing a path by building novel tools or dashboards.

You share lessons with the larger engineering community. Furthermore, you treat operations as an architectural

concern, treating operational health as a first-order design requirement.

Learning
While you are an expert in your craft, you continue to learn and grow. You relentlessly seek to better understand the

particulars of your dependencies, your customers, and how to influence others across your organization/the

company. You are comfortable stepping into a new domain (code, product, strategy) and ramping up quickly. You

look outside Zillow—you know most problems are not new. You learn from the larger industry to improve and

149

innovate by examining case studies, exploring new technologies, and importing best practices. You proactively stay

abreast of the latest tooling, test new methodologies, and adapt to new patterns of work.

5.6 P6: Senior Principal Engineer

Key Facets: Leadership and Strategy

You act as a technical thought leader for a large organization, influencing senior leaders and individual contributors

to define technical strategy, shaping organizational/architectural structure, and establishing the bar for engineering

culture. You build, but the scale at which you build has changed: you trade time spent coding to solve higher order

concerns, leveraging your experience and judgment to tie together disparate systems into coherent technical

strategy. You understand that organization and software architecture are intertwined, and that the act of shaping

software at this scale is as much an act of leadership as it is one of authorship.

You are an expert at choosing how best to deliver value to the company—you are judicious and precise with where

you dive deep, and you are effective when you do. Your talent for communication is more critical than ever: you

must influence indirectly, shaping software that you may rarely (or never) directly touch or projects over which you

have no immediate control. The partnerships you build with leadership and your peers are paramount to your

success. Your impact is measured by the critical outcomes you achieve through influence, mentorship, and the

growth of others.

Leadership
You are trusted to act as a technical leader for an organization, typically advising at the Senior Director or VP level.

Senior Principals, peers, product managers, and others seek you out and trust you to represent the technical

capabilities and constraints of your organization. You develop partnerships with stakeholders at multiple levels, from

juniors to directors of Product, maintaining rich channels of communication in order to keep a pulse on and

influence technical outcomes. You routinely cross organizational boundaries, partnering with peers and

Distinguished Engineers to evolve cross-organization contracts and interactions.

You are also responsible for the engineering tenor and culture of your organization. You keep a close pulse on

quality of code, design, testing, and operations across your teams, stepping in to elevate and cultivate as necessary.

You seek to understand and measure technical debt, bringing attention to management and offering creative

options to pay down. You embrace that leadership of others is most effective when it happens in collaboration, and

you are not afraid to roll up your sleeves to help out. Leading through change is equally important: you push the

boundaries of what’s possible through exploration, proof of concepts, and prototypes. Juniors routinely come to you

for advice and feedback, and you are skilled at offering it in a way that motivates instead of discourages.

Strategy
You are a key contributor to your organization’s technical strategy. You are recognized as an expert in your business

and industry domain, acting as a bridge between the strategic needs of the business and the capabilities, limitations,

and investment opportunities of your systems. You work hand-in-hand with leadership to establish multi-year

roadmaps, decomposing problems across teams and time scales. You understand that organization and architecture

150

are two sides of the same coin, and work with management to establish team structures that align with desired

architectures.

The problems you solve are usually undefined: as the steward of a large technical domain, you proactively seek to

identify ambiguities, gaps, or inefficiencies unnoticed by others. You are an expert at drilling down to the finest

technical levels, intelligently leveraging the expertise of juniors but seeking a deep understanding of

particulars—when necessary and appropriate. You focus on the emergent behaviors of teams: you understand how

changes in one domain affect the others, and you proactively seek to arrive at an ever-more-coherent common

architecture. You are skilled at discerning critical detail and ignoring the chaff.

Communication
Your effectiveness is underpinned by your exceptional verbal and written communication skills. Your artifacts set the

bar for cogent technical communications. You tailor communications to the audience, from non-technical to junior

technical to peers. You cultivate collaboration, listening to and integrating feedback across all levels. You are trusted

to resolve contentious cross-organizational technical conflicts.

Code, Operations, and Architecture
You create elegant architectures that solve complex engineering and product challenges that span organizations. You

understand that the shape of the organization and architecture are fundamentally intertwined. You scour

organizational models for misalignment, seeking to unify, simplify, and standardize. You seek coherence between

your domain(s) and the larger company, leveraging your broad context to align with cross-cutting strategy. You

promote reuse and intentional integration while preserving the autonomy necessary to build domain-centric

solutions with nimbleness and alacrity. You identify operational pain resulting from misalignment or poor

architecture and act to resolve it.

You code and operate less. You do, however, maintain an awareness of your code bases to ensure you understand

how your software works and identify potential emergent problems. You’re adept at using AI to quickly ramp up in

unfamiliar contexts, discover what’s possible in practice, and demonstrate new approaches to others through

functional examples. You are intentional: when you code you blaze a fresh technical trail or leverage your deep

expertise to resolve a critical issue.

Learning
Finally, you can learn technical details without the luxury of working closely on an individual code base—though

you're still comfortable diving into one and learning the deepest details, if necessary. You are skilled at knowing

what you need to learn to drive the technical direction of your organization. You stay abreast of industry trends and

technologies, selectively identifying those that offer your organization a strategic advantage.

5.7 P7: Distinguished Engineer

Key Facets: Leadership, Strategy, Communication

You build at company-scale, working hand-in-hand with senior-most leadership to guide key aspects of the

151

business's technology. You peer into the future, anticipating disruptive opportunities in the changing technology

landscape, balancing risk vs reward. You intentionally steward our engineering culture, cultivating excellence at all

levels and across all outputs. You exemplify technical leadership at the largest scales, acting as a paragon for others

to aspire to.

Leadership
You operate at the company scale, typically advising at the Vice President or Senior Vice President level. As a trusted

member of the senior leadership team, you work hand-in-hand with executives and Senior Principal Engineers to

achieve strategic business objectives. You maintain a pulse on fundamental product ideation in order to inform the

capabilities of the company’s engineering ecosystem, proactively seeking to remedy deficiencies and strategic

bottlenecks. Your domain expertise—both technical and business—are recognized and relied upon across the

company.

You set the standard for engineering excellence. You hold management accountable for engineering quality, actively

educating leadership as to the costs of deferred investments, accumulating technical debt, and outdated

technologies. You seek to educate and disseminate knowledge—not only your own but, more importantly, that of

others. You identify mechanisms and promote standards to measure and drive high-quality outputs—but you are

protective of the line engineers, seeking to insulate them from well-meaning but intrusive top-down directives. You

not only embody the philosophy of cultivation over prescription, and you teach your Principal engineers how to act

this way in turn.

Strategy
You partner with executives to define and act upon key business initiatives, establishing strategy that cuts across

organizational boundaries. You survey an expansive technical and business landscape to anticipate strategic needs of

the business, identifying and disambiguating the largest, most critical problems. You anticipate the emergent

problems that arise from misaligned architectures, charters, and contracts across large organizations, and you

leverage your deep technical and domain expertise to achieve elegance and efficiency at company scale.

You act as a critical influence on key technological investments. You participate in acquisition decisions to evaluate

potential technology advantages or alignment. You critically assess (and reassess) build-vs-buy decisions, carefully

distinguishing differentiated and commodity value. You are patient and empathetic, but you own and steward key

technical decisions to their correct outcome regardless of tensions and vested interests. You constantly inspect our

current capabilities for sunset opportunities, rigorously identifying areas that are redundant, outdated, or

unnecessary.

Communication
You are exceptional at tailoring your communications: you inform and motivate large bodies of engineers; you

crisply inform senior leadership. You are a technical face of the company, both internally and externally, skilled at

representing initiatives, capabilities, and technology to a complete gamut of audiences. You cultivate networks of

collaboration, building communication channels across the company.

152

Code, Operations, and Architecture
You drive cross-organization architecture by identifying key components, defining the relationships between, and

delegating specific sub-designs to relevant juniors. You treat organizational structure and architecture as two

variants of the same problem, acting as the technical stakeholder in all organizational decisions. You tend to see

operational problems through the lens of architecture and process, shaping strategy and culture to solve structural

operational pain. Depending on the needs of your organization, you may occasionally lead through code by blazing

novel paths.

Finally, you recognize that this is a rare role, and that your actions shape it as much as any role description. You

don’t just follow the expectations of a Distinguished Engineer; you seek to shape and elevate that role in your daily

actions. You are a core leader of our company, and you do not hesitate to lead.

Learning
You leverage others to learn the information necessary to lead and strategize across hundreds of engineers. You are

an expert at knowing how to learn as much as necessary and no more—sometimes, this means going very deep,

judiciously. You stay abreast of industry trends and technologies, anticipating risks and opportunities for the

company.

153

	
	MULTIPLIER
	

	Table of contents
	Why we wrote this
	How to read this book
	Our intended audience
	How it’s structured
	Facets and the engineering ladder
	Zillow’s core values
	Cloud HQ
	Part I

	Creating impact through leverage
	Section 1
	Thinking long-term and designing for change
	Technique: Working backward
	Scenario

	Technique: Beware local maxima
	
	Section 2

	Creating clarity from ambiguity
	Scenario
	Technique: Proof of Concept
	Scenario

	Technique: Seek two-way doors
	Technique: Quantify the problem
	Scenario

	Technique: Act decisively
	Scenario

	
	

	
	Section 3
	Creating surface area for others
	Technique: Know the engineers of your organization
	Scenario

	Technique: Inspecting, intervening, and letting others fail
	Technique: Lead with questions, not answers

	
	Part II

	Cultivating relationships
	The correlation between relationships and influence
	Building and understanding relationships
	Common barriers to understanding others
	Indicators of strong relationships
	Section 1
	Building relationships with juniors
	Technique: Building trust
	Technique: Informal Mentorship
	Technique: Formal mentorship
	Technique: Giving feedback
	Technique: Involve juniors in decision-making
	Scenario

	
	
	
	Section 2

	Building relationships with management
	Technique: Managing up
	Technique: Getting the most out of a 1:1
	Scenario

	
	Technique: Status updates and transparent communication
	

	Section 3

	Building relationships with project stakeholders
	Technique: Laying the groundwork with nemawashi
	Scenario

	Technique: Collaborate with PM to understand stakeholder priorities
	

	Section 4

	Building your network
	Technique: Engage in cross-orginizational initiatives
	Technique: Make connections through forums
	Technique: Leverage relationships to expand your network

	
	Part III

	Leveraging influence
	Influencing down, up, out, and across
	
	Section 1
	Cultivating a standard of excellence
	Technique: Lead by example
	Scenario

	Technique: Pave the way
	Scenario

	Technique: Amplify success
	Scenario

	Technique: Build communities of technical excellence
	Scenario

	
	
	Section 2

	Driving impact through collaboration
	Technique: Lead technical working groups
	Scenario

	Technique: Resolve technical conflict
	Scenario

	Technique: Communicate with clarity
	Scenario

	

	
	Part IV

	Scaling yourself
	
	Quadrant 1
	Getting the important things done
	Technique: Discuss priority with stakeholders
	Technique: Planned focus time
	
	Technique: Manage your meetings
	
	Quadrant 2

	Working on the long-term things
	Technique: Let time reveal what’s important
	Technique: Write it down
	Technique: A bi-modal approach to decision making

	
	Quadrant 3
	Shedding the unimportant things
	Technique: Delegation
	Scenario

	Technique: Reduce planning commitment
	Technique: Identify systemic causes
	Technique: Choose your battles

	
	Quadrant 4
	Discarding the rest
	Technique: Saying no to your managerial chain
	Scenario

	Technique: Saying no to a stakeholder
	Technique: Saying no to a junior
	
	Part V

	Building technical strategy
	
	Section 1
	Fundamentals of good strategy
	Section 2

	Diagnosis
	Technique: Understanding business priorities
	Scenario

	Technique: Understanding engineering priorities
	Technique: Learning from the industry
	Scenario

	
	Section 3
	Guiding policy
	Technique: Delivering incremental value
	Technique: Experimentation and learning
	Technique: Develop a framework for prioritizing technical debt
	Scenario 1
	Scenario 2

	
	Section 4
	Coherent actions
	Example: Strangler fig
	Example: Shadow runner
	Example: Stitch a solution together with steel threads
	Section 5

	Putting it all together: Crafting a strategic proposal
	
	Technique: The power of writing it all down
	Technique: Articulate risks and tradeoffs
	Technique: Strategic evolution

	
	Conclusion
	About the authors
	
	Acknowledgments
	
	
	
	
	Appendix
	Zillow Group Core Values
	Consumers are our North Star
	Do the Right Thing
	Turn on the Lights
	Own It
	Better Together
	We Play to Win

	Zillow Group Software Development Engineer Leveling Guide
	1 Overview
	2 Role Description
	3 Facets of the Software Development Engineer role
	4 Career Progression Summary
	5 Level Descriptions
	5.1 P1: Software Development Engineer Apprentice
	Learning
	Code
	Operations
	Communication
	Architecture, Leadership, Strategy
	5.2 P2: Software Development Engineer-I
	Code
	Learning
	Operations
	Architecture
	Communication
	Leadership
	Strategy
	5.3 P3: Software Development Engineer-II
	Code
	Operations
	Architecture
	Learning
	Communication
	Leadership
	Strategy
	5.4 P4: Senior Software Development Engineer
	Code
	Architecture
	Operations
	Leadership
	Communication
	Strategy
	Learning
	5.5 P5: Principal Engineer
	Leadership
	Architecture
	Strategy
	Code
	Communication
	Operations
	Learning
	5.6 P6: Senior Principal Engineer
	Leadership
	Strategy
	Communication
	Code, Operations, and Architecture
	Learning
	5.7 P7: Distinguished Engineer
	Leadership
	Strategy
	Communication
	Code, Operations, and Architecture
	Learning

	

